Citation: Huang Jiaqi, Sun Yingzhi, Wang Yunfei, Zhang Qiang. Review on Advanced Functional Separators for Lithium-Sulfur Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 173-188. doi: 10.6023/A16080454 shu

Review on Advanced Functional Separators for Lithium-Sulfur Batteries

  • Corresponding author: Zhang Qiang, zhang-qiang@mails.tsinghua.edu.cn;zhangqiangflotu@tsinghua.edu.cn
  • Received Date: 30 August 2016

    Fund Project: Natural Scientific Foundation of China Nos. 21306103 and 21422604and Tsinghua University Initiative Scientific Research Program No. 20161080166Project supported by the National Key Research and Development Program of China No. 2016YFA0202500

Figures(6)

  • As the demand to energy storage devices for portable electronics and electric vehicles increase, lithium-sulfur (Li-S) batteries have attracted much attention for its extremely high energy density. However, the low coulombic efficiency, rapid fading capacity, and poor cycle performance of lithium anode hinder the demonstration of practical Li-S cells. The advanced functional separator/interlayer system have been proposed and verified to retard the shuttle of polysulfides and extend the cycling life of a Li-S cell. In this review, the progress on multifunctional separators/interlayers for lithium sulfur batteries are summarized, including permselective separator inhibiting polysulfide shuttles, separator with low interfacial resistance, and composite electrolyte stabilizing anode and retarding the formation of Li dendrites. New insights into challenge and opportunities of multifunctional separator/interlayer system are also prospected.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. 

    2. [2]

      Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28.

    3. [3]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.

    4. [4]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172. 

    5. [5]

      Manthiram, A.; Chung, S. H.; Zu, C. Adv. Mater. 2015, 27, 1980.

    6. [6]

      Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem., Int. Ed. 2013, 52, 13186. 

    7. [7]

      Yin, Y. X.; Yao, H. R.; Guo, Y. G. Chin. Phys. B 2016, 25, 018801. 

    8. [8]

      Borchardt, L.; Oschatz, M.; Kaskel, S. Chem. Eur. J. 2016, 22, 7324. 

    9. [9]

      Gu, X. X.; Zhang, S. Q.; Hou, Y. L. Chin. J. Chem. 2016, 34, 11.

    10. [10]

      Zhang, Q.; Cheng, X. B.; Huang, J. Q.; Peng, H. J.; Wei, F. New Carbon Mater. 2014, 29, 241.

    11. [11]

      Xu, G. Y.; Ding, B.; Pan, J.; Nie, P.; Shen, L. F.; Zhang, X. G. J. Mater. Chem. A 2014, 2, 12662. 

    12. [12]

      Lin, Z.; Liang, C. D. J. Mater. Chem. A 2015, 3, 936. 

    13. [13]

      Kang, W.; Deng, N.; Ju, J.; Li, Q.; Wu, D.; Ma, X.; Li, L.; Naebe, M.; Cheng, B. Nanoscale 2016, 8, 16541.

    14. [14]

      Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Chem. Soc. Rev. 2016, 45, 5605. 

    15. [15]

      Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X. Adv. Mater. 2002, 14, 963. 

    16. [16]

      Ji, X. L.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. 

    17. [17]

      Evers, S.; Nazar, L. F. Acc. Chem. Res. 2013, 46, 1135. 

    18. [18]

      Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Carbon 2015, 92, 41.

    19. [19]

      Yang, Y.; Zheng, G.; Cui, Y. Chem. Soc. Rev. 2013, 42, 3018. 

    20. [20]

      Wang, J. G.; Xie, K.; Wei, B. Nano Energy 2015, 15, 413. 

    21. [21]

      Wu, S.; Ge, R.; Lu, M.; Xu, R.; Zhang, Z. Nano Energy 2015, 15, 379.

    22. [22]

      Imtiaz, S.; Zhang, J.; Zafar, Z. A.; Ji, S.; Huang, T.; Anderson, J. A.; Zhang, Z.; Huang, Y. Sci. China Mater. 2016, 59, 389. 

    23. [23]

      Yuan, S. Y.; Guo, Z. Y.; Wang, L. N.; Hu, S.; Wang, Y. G.; Xia, Y. Y. Adv. Sci. 2015, 2, 1500071. 

    24. [24]

      Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Adv. Mater. 2014, 26, 6100.

    25. [25]

      Song, J.; Xu, T.; Gordin, M. L.; Zhu, P.; Lv, D.; Jiang, Y. B.; Chen, Y.; Duan, Y.; Wang, D. Adv. Funct. Mater. 2014, 24, 1243. 

    26. [26]

      Peng, H. J.; Hou, T. Z.; Zhang, Q.; Huang, J. Q.; Cheng, X. B.; Guo, M. Q.; Yuan, Z.; He, L. Y.; Wei, F. Adv. Mater. Interfaces 2014, 1, 1400227. 

    27. [27]

      Tao, X.; Wang, J.; Liu, C.; Wang, H.; Yao, H.; Zheng, G.; Seh, Z. W.; Cai, Q.; Li, W.; Zhou, G.; Zu, C.; Cui, Y. Nat. Commun. 2016, 7, 11203.

    28. [28]

      Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Nano Lett. 2016, 16, 519.

    29. [29]

      Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Angew. Chem. Int. Ed. 2016, 55, 3982. 

    30. [30]

      Wang, J. L.; He, Y. S.; Yang, J. Adv. Mater. 2015, 27, 569.

    31. [31]

      Wei, Y.; Tao, Y.; Kong, Z.; Liu, L.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Energy Storage Mater. 2016, 5, 171.

    32. [32]

      Liang, J.; Sun, Z. H.; Li, F.; Cheng, H. M. Energy Storage Mater. 2016, 2, 76. 

    33. [33]

      Lv, W.; Li, Z. J.; Deng, Y. Q.; Yang, Q. H.; Kang, F. Y. Energy Storage Mater. 2016, 2, 107. 

    34. [34]

      Yu, M.; Li, R.; Wu, M.; Shi, G. Energy Storage Mater. 2015, 1, 51.

    35. [35]

      Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Adv. Funct. Mater. 2014, 24, 6105. 

    36. [36]

      Zhao, Q.; Hu, X. F.; Zhang, K.; Zhang, N.; Hu, Y. X.; Chen, J. Nano Lett. 2015, 15, 721. 

    37. [37]

      Zhang, C.; Yang, Q. H. Sci. China-Mater. 2015, 58, 349. 

    38. [38]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213.

    39. [39]

       

    40. [40]

      Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Adv. Energy Mater. 2015, 5, 1402273. 

    41. [41]

      Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Small 2014, 10, 4257.

    42. [42]

      Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, R.; Zhao, C. Z.; Zhang, Q. ACS Nano 2015, 9, 6373. 

    43. [43]

      Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. 

    44. [44]

      Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155.

    45. [45]

      Sun, Y.; Zheng, G.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Chem 2016, 1, 287.

    46. [46]

      Suo, L.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481.

    47. [47]

      Zhao, C. Z.; Cheng, X. B.; Zhang, R.; Peng, H. J.; Huang, J. Q.; Ran, R.; Huang, Z. H.; Wei, F.; Zhang, Q. Energy Storage Mater. 2016, 3, 77. 

    48. [48]

      Yan, C.; Cheng, X.-B.; Zhao, C.-Z.; Huang, J.-Q.; Yang, S.-T.; Zhang, Q. J. Power Sources 2016, 327, 212. 

    49. [49]

      Huang, J. Q.; Zhang, Q.; Wei, F. Energy Storage Mater. 2015, 1, 127. 

    50. [50]

      Arora, P.; Zhang, Z. M. Chem. Rev. 2004, 104, 4419. 

    51. [51]

    52. [52]

      Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969.

    53. [53]

      Jin, Z. Q.; Xie, K.; Hong, X. B.; Hu, Z. Q.; Liu, X. J. Power Sources 2012, 218, 163. 

    54. [54]

      Yu, X.; Joseph, J.; Manthiram, A. J. Mater. Chem. A 2015, 3, 15683. 

    55. [55]

      Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian, W. Z.; Wei, F. Energy Environ. Sci. 2014, 7, 347.

    56. [56]

      Xu, W. T.; Peng, H. J.; Huang, J. Q.; Zhao, C. Z.; Cheng, X. B.; Zhang, Q. ChemSusChem 2015, 8, 2892.

    57. [57]

      Bauer, I.; Thieme, S.; Bruckner, J.; Althues, H.; Kaskel, S. J. Power Sources 2014, 251, 417. 

    58. [58]

      Yu, X.; Manthiram, A. Adv. Energy Mater. 2015, 5, 1500350. 

    59. [59]

      Bauer, I.; Kohl, M.; Althues, H.; Kaskel, S. Chem. Commun. 2014, 50, 3208.

    60. [60]

      Liu, X.; Shan, Z.; Zhu, K.; Du, J.; Tang, Q.; Tian, J. J. Power Sources 2015, 274, 85. 

    61. [61]

      Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Small 2016, 12, 381.

    62. [62]

      Hao, Z. X.; Yuan, L. X.; Li, Z.; Liu, J.; Xiang, J. W.; Wu, C.; Zeng, R.; Huang, Y. H. Electrochim. Acta 2016, 200, 197. 

    63. [63]

      Cai, W. L.; Li, G. R.; He, F.; Jin, L. M.; Liu, B. H.; Li, Z. P. J. Power Sources 2015, 283, 524.

    64. [64]

      Jin, Z. Q.; Xie, K.; Hong, X. B. RSC Adv. 2013, 3, 8889. 

    65. [65]

      Gu, M.; Lee, J.; Kim, Y.; Kim, J. S.; Jang, B. Y.; Lee, K. T.; Kim, B. S. RSC Adv. 2014, 4, 46940. 

    66. [66]

      Conder, J.; Forner-Cuenca, A.; Gubler, E. M.; Gubler, L.; Novák, P.; Trabesinger, S. ACS Appl. Mater. Interfaces 2016, 8, 18822. 

    67. [67]

      Conder, J.; Urbonaite, S.; Streich, D.; Novák, P.; Gubler, L. RSC Adv. 2015, 5, 79654.

    68. [68]

      Zeng, F.; Jin, Z.; Yuan, K.; Liu, S.; Cheng, X.; Wang, A.; Wang, W.; Yang, Y. S. J. Mater. Chem. A 2016, 4, 12319. 

    69. [69]

      Ahn, W.; Lim, S. N.; Lee, D. U.; Kim, K. B.; Chen, Z. W.; Yeon, S. H. J. Mater. Chem. A 2015, 3, 9461. 

    70. [70]

      Yim, T.; Han, S. H.; Park, N. H.; Park, M. S.; Lee, J. H.; Shin, J.; Choi, J. W.; Jung, Y.; Jo, Y. N.; Yu, J. S.; Kim, K. J. Adv. Funct. Mater. 2016, 26, 7817. 

    71. [71]

      Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343, 752. 

    72. [72]

      Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Science 2012, 335, 442. 

    73. [73]

      Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. ACS Nano 2015, 9, 3002. 

    74. [74]

      Lin, W.; Chen, Y.; Li, P.; He, J.; Zhao, Y.; Wang, Z.; Liu, J.; Qi, F.; Zheng, B.; Zhou, J.; Xu, C.; Fu, F. J. Electrochem. Soc. 2015, 162, A1624.

    75. [75]

      Wu, F.; Qian, J.; Chen, R.; Ye, Y.; Sun, Z.; Xing, Y.; Li, L. J. Mater. Chem. A 2016, 4, 17033. 

    76. [76]

      Sun, J.; Sun, Y.; Pasta, M.; Zhou, G.; Li, Y.; Liu, W.; Xiong, F.; Cui, Y. Adv. Mater. 2016, 28, 9797.

    77. [77]

      Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. Adv. Mater. 2014, 26, 625. 

    78. [78]

      Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Nature Energy 2016, 1, 16094.

    79. [79]

      Bai, S.; Zhu, K.; Wu, S.; Wang, Y.; Yi, J.; Ishida, M.; Zhou, H. J. Mater. Chem. A 2016, 4, 16812. 

    80. [80]

      Li, C. Y.; Ward, A. L.; Doris, S. E.; Pascal, T. A.; Prendergast, D.; Helms, B. A. Nano Lett. 2015, 15, 5724. 

    81. [81]

      Li, W.; Hicks-Garner, J.; Wang, J.; Liu, J.; Gross, A. F.; Sherman, E.; Graetz, J.; Vajo, J. J.; Liu, P. Chem. Mater. 2014, 26, 3403.

    82. [82]

      Yu, X. W.; Bi, Z. H.; Zhao, F.; Manthiram, A. ACS Appl. Mater. Interfaces 2015, 7, 16625. 

    83. [83]

      Zhang, Z. Y.; Lai, Y. Q.; Zhang, Z. A.; Zhang, K.; Li, J. E. Electrochim. Acta 2014, 129, 55. 

    84. [84]

      Chung, S. H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Adv. Energy Mater. 2015, 5, 1500738. 

    85. [85]

      Wei, H.; Ma, J.; Li, B. A.; Zuo, Y. X.; Xia, D. G. ACS Appl. Mater. Interfaces 2014, 6, 20276. 

    86. [86]

      Wang, Z.; Zhang, J.; Yang, Y.; Yue, X.; Hao, X.; Sun, W.; Rooney, D.; Sun, K. J. Power Sources 2016, 329, 305. 

    87. [87]

      Liu, N.; Huang, B.; Wang, W.; Shao, H.; Li, C.; Zhang, H.; Wang, A.; Yuan, K.; Huang, Y. ACS Appl. Mater. Interfaces 2016, 8, 16101. 

    88. [88]

      Shao, H.; Huang, B.; Liu, N.; Wang, W.; Zhang, H.; Wang, A.; Wang, F.; Huang, Y. J. Mater. Chem. A 2016, 4, 16627. 

    89. [89]

      Lapornik, V.; Tusar, N. N.; Ristic, A.; Chellappan, R. K.; Foix, D.; Dedryvere, R.; Gaberscek, M.; Dominko, R. J. Power Sources 2015, 274, 1239. 

    90. [90]

      Nair, J. R.; Bella, F.; Angulakshmi, N.; Stephan, A. M.; Gerbaldi, C. Energy Storage Mater. 2016, 3, 69. 

    91. [91]

      Qian, X.; Jin, L.; Zhao, D.; Yang, X.; Wang, S.; Shen, X.; Rao, D.; Yao, S.; Zhou, Y.; Xi, X. Electrochim. Acta 2016, 192, 346.

    92. [92]

      Wang, H. Q.; Zhang, W. C.; Liu, H. K.; Guo, Z. P. Angew. Chem., Int. Ed. 2016, 55, 3992. 

    93. [93]

      Zhang, Y.; Miao, L.; Ning, J.; Xiao, Z.; Hao, L.; Wang, B.; Zhi, L. 2D Mater. 2015, 2, 024013.

    94. [94]

      Cheng, X.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y.; Zhao, X. RSC Adv. 2016, 6, 89972.

    95. [95]

      Hou, T. Z.; Peng, H. J.; Huang, J. Q.; Zhang, Q.; Li, B. 2D Mater. 2015, 2, 014011.

    96. [96]

      Chang, C. H.; Chung, S. H.; Manthiram, A. J. Mater. Chem. A 2015, 3, 18829. 

    97. [97]

      Zhu, J.; Chen, C.; Lu, Y.; Zang, J.; Jiang, M.; Kim, D.; Zhang, X. Carbon 2016, 101, 272.

    98. [98]

      Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Small 2016, 12, 3283.

    99. [99]

      Fan, C. Y.; Yuan, H. Y.; Li, H. H.; Wang, H. F.; Li, W. L.; Sun, H. Z.; Wu, X. L.; Zhang, J. P. ACS Appl. Mater. Interfaces 2016, 8, 16108. 

    100. [100]

      Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Angew. Chem., Int. Ed. 2015, 54, 4325. 

    101. [101]

      Peng, H. J.; Zhang, Q. Angew. Chem., Int. Ed. 2015, 54, 11018. 

    102. [102]

      Zhou, X.; Liao, Q.; Tang, J.; Bai, T.; Chen, F.; Yang, J. J. Electroanal. Chem. 2016, 768, 55. 

    103. [103]

      Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. J. Power Sources 2016, 303, 317. 

    104. [104]

      Lin, C.; Zhang, W.; Wang, L.; Wang, Z.; Zhao, W.; Duan, W.; Zhao, Z.; Liu, B.; Jin, J. J. Mater. Chem. A 2016, 4, 5993. 

    105. [105]

      Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Angew. Chem., Int. Ed. 2016, 55, 12990. 

    106. [106]

      Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. Adv. Mater. 2015, 27, 2891. 

    107. [107]

      Song, J.; Su, D.; Xie, X.; Guo, X.; Bao, W.; Shao, G.; Wang, G. ACS Appl. Mater. Interfaces 2016, 8, 29427. 

    108. [108]

      Chung, S. H.; Chang, C. H.; Manthiram, A. Small 2016, 12, 939.

    109. [109]

      Chung, S. H.; Manthiram, A. J. Phys. Chem. Lett. 2014, 5, 1978. 

    110. [110]

      Chung, S. H.; Manthiram, A. Adv. Mater. 2014, 26, 7352.

    111. [111]

      Chung, S. H.; Manthiram, A. Adv. Funct. Mater. 2014, 24, 5299. 

    112. [112]

      Zhang, Z.; Lai, Y.; Zhang, Z.; Li, J. Solid State Ionics 2015, 278, 166.

    113. [113]

      Wang, Q.; Wen, Z.; Yang, J.; Jin, J.; Huang, X.; Wu, X.; Han, J. J. Power Sources 2016, 306, 347. 

    114. [114]

      Zhu, J.; Ge, Y.; Kim, D.; Lu, Y.; Chen, C.; Jiang, M.; Zhang, X. Nano Energy 2016, 20, 176.

    115. [115]

      Zhao, D.; Qian, X.; Jin, L.; Yang, X.; Wang, S.; Shen, X.; Yao, S.; Rao, D.; Zhou, Y.; Xi, X. RSC Adv. 2016, 6, 13680.

    116. [116]

      Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Adv. Funct. Mater. 2015, 25, 5285. 

    117. [117]

      Zhang, Z.; Wang, G. C.; Lai, Y. Q.; Li, J.; Zhang, Z. Y.; Chen, W. J. Power Sources 2015, 300, 157. 

    118. [118]

      Wang, G. C.; Lai, Y. Q.; Zhang, Z. A.; Li, J.; Zhang, Z. Y. J. Mater. Chem. A 2015, 3, 7139. 

    119. [119]

      Luo, L.; Chung, S. H.; Manthiram, A. J. Mater. Chem. A 2016, 4, 16805. 

    120. [120]

      Chen, Y. L.; Liu, N. Q.; Shao, H. Y.; Wang, W. K.; Gao, M. Y.; Li, C. M.; Zhang, H.; Wang, A. B.; Huang, Y. Q. J. Mater. Chem. A 2015, 3, 15235. 

    121. [121]

      Zhou, G.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S.; Li, F.; Cheng, H. M. Adv. Mater. 2015, 27, 641. 

    122. [122]

      Wang, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Chem. Commun. 2015, 51, 6996. 

    123. [123]

      Zhu, J.; Yanilmaz, M.; Fu, K.; Chen, C.; Lu, Y.; Ge, Y.; Kim, D.; Zhang, X. J. Membrane Sci. 2016, 504, 89. 

    124. [124]

      Li, Z.; Jiang, Q. Q.; Ma, Z. L.; Liu, Q. H.; Wu, Z. J.; Wang, S. Y. RSC Adv. 2015, 5, 79473. 

    125. [125]

      Li, G. C.; Jing, H. K.; Su, Z.; Lai, C.; Chen, L.; Yuan, C. C.; Li, H. H.; Liu, L. J. Mater. Chem. A 2015, 3, 11014. 

    126. [126]

      Zhang, Z.; Zhang, Z.; Li, J.; Lai, Y. J. Solid State Electr. 2015, 19, 1709. 

    127. [127]

      Ma, G.; Huang, F.; Wen, Z.; Wang, Q.; Hong, X.; Jin, J.; Wu, X. J.Mater. Chem. A 2016, 4, 16968. 

    128. [128]

      Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Energy Environ. Sci. 2014, 7, 3381.

    129. [129]

      Peng, H. J.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. Adv. Sci. 2016, 3, 1500268.

    130. [130]

      Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. Adv. Mater. 2016, 28, 9551.

    131. [131]

      Wu, F.; Ye, Y.; Chen, R.; Qian, J.; Zhao, T.; Li, L.; Li, W. Nano Lett. 2015, 15, 7431.

    132. [132]

      Kim, J. S.; Hwang, T. H.; Kim, B. G.; Min, J.; Choi, J. W. Adv. Funct. Mater. 2014, 24, 5359. 

    133. [133]

      Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2016, 28, 2888.

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    12. [12]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

Metrics
  • PDF Downloads(142)
  • Abstract views(5368)
  • HTML views(823)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return