Citation: Huang Jiaqi, Sun Yingzhi, Wang Yunfei, Zhang Qiang. Review on Advanced Functional Separators for Lithium-Sulfur Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 173-188. doi: 10.6023/A16080454 shu

Review on Advanced Functional Separators for Lithium-Sulfur Batteries

  • Corresponding author: Zhang Qiang, zhang-qiang@mails.tsinghua.edu.cn;zhangqiangflotu@tsinghua.edu.cn
  • Received Date: 30 August 2016

    Fund Project: Natural Scientific Foundation of China Nos. 21306103 and 21422604and Tsinghua University Initiative Scientific Research Program No. 20161080166Project supported by the National Key Research and Development Program of China No. 2016YFA0202500

Figures(6)

  • As the demand to energy storage devices for portable electronics and electric vehicles increase, lithium-sulfur (Li-S) batteries have attracted much attention for its extremely high energy density. However, the low coulombic efficiency, rapid fading capacity, and poor cycle performance of lithium anode hinder the demonstration of practical Li-S cells. The advanced functional separator/interlayer system have been proposed and verified to retard the shuttle of polysulfides and extend the cycling life of a Li-S cell. In this review, the progress on multifunctional separators/interlayers for lithium sulfur batteries are summarized, including permselective separator inhibiting polysulfide shuttles, separator with low interfacial resistance, and composite electrolyte stabilizing anode and retarding the formation of Li dendrites. New insights into challenge and opportunities of multifunctional separator/interlayer system are also prospected.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. 

    2. [2]

      Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28.

    3. [3]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.

    4. [4]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172. 

    5. [5]

      Manthiram, A.; Chung, S. H.; Zu, C. Adv. Mater. 2015, 27, 1980.

    6. [6]

      Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem., Int. Ed. 2013, 52, 13186. 

    7. [7]

      Yin, Y. X.; Yao, H. R.; Guo, Y. G. Chin. Phys. B 2016, 25, 018801. 

    8. [8]

      Borchardt, L.; Oschatz, M.; Kaskel, S. Chem. Eur. J. 2016, 22, 7324. 

    9. [9]

      Gu, X. X.; Zhang, S. Q.; Hou, Y. L. Chin. J. Chem. 2016, 34, 11.

    10. [10]

      Zhang, Q.; Cheng, X. B.; Huang, J. Q.; Peng, H. J.; Wei, F. New Carbon Mater. 2014, 29, 241.

    11. [11]

      Xu, G. Y.; Ding, B.; Pan, J.; Nie, P.; Shen, L. F.; Zhang, X. G. J. Mater. Chem. A 2014, 2, 12662. 

    12. [12]

      Lin, Z.; Liang, C. D. J. Mater. Chem. A 2015, 3, 936. 

    13. [13]

      Kang, W.; Deng, N.; Ju, J.; Li, Q.; Wu, D.; Ma, X.; Li, L.; Naebe, M.; Cheng, B. Nanoscale 2016, 8, 16541.

    14. [14]

      Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Chem. Soc. Rev. 2016, 45, 5605. 

    15. [15]

      Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X. Adv. Mater. 2002, 14, 963. 

    16. [16]

      Ji, X. L.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. 

    17. [17]

      Evers, S.; Nazar, L. F. Acc. Chem. Res. 2013, 46, 1135. 

    18. [18]

      Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Carbon 2015, 92, 41.

    19. [19]

      Yang, Y.; Zheng, G.; Cui, Y. Chem. Soc. Rev. 2013, 42, 3018. 

    20. [20]

      Wang, J. G.; Xie, K.; Wei, B. Nano Energy 2015, 15, 413. 

    21. [21]

      Wu, S.; Ge, R.; Lu, M.; Xu, R.; Zhang, Z. Nano Energy 2015, 15, 379.

    22. [22]

      Imtiaz, S.; Zhang, J.; Zafar, Z. A.; Ji, S.; Huang, T.; Anderson, J. A.; Zhang, Z.; Huang, Y. Sci. China Mater. 2016, 59, 389. 

    23. [23]

      Yuan, S. Y.; Guo, Z. Y.; Wang, L. N.; Hu, S.; Wang, Y. G.; Xia, Y. Y. Adv. Sci. 2015, 2, 1500071. 

    24. [24]

      Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Adv. Mater. 2014, 26, 6100.

    25. [25]

      Song, J.; Xu, T.; Gordin, M. L.; Zhu, P.; Lv, D.; Jiang, Y. B.; Chen, Y.; Duan, Y.; Wang, D. Adv. Funct. Mater. 2014, 24, 1243. 

    26. [26]

      Peng, H. J.; Hou, T. Z.; Zhang, Q.; Huang, J. Q.; Cheng, X. B.; Guo, M. Q.; Yuan, Z.; He, L. Y.; Wei, F. Adv. Mater. Interfaces 2014, 1, 1400227. 

    27. [27]

      Tao, X.; Wang, J.; Liu, C.; Wang, H.; Yao, H.; Zheng, G.; Seh, Z. W.; Cai, Q.; Li, W.; Zhou, G.; Zu, C.; Cui, Y. Nat. Commun. 2016, 7, 11203.

    28. [28]

      Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Nano Lett. 2016, 16, 519.

    29. [29]

      Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Angew. Chem. Int. Ed. 2016, 55, 3982. 

    30. [30]

      Wang, J. L.; He, Y. S.; Yang, J. Adv. Mater. 2015, 27, 569.

    31. [31]

      Wei, Y.; Tao, Y.; Kong, Z.; Liu, L.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Energy Storage Mater. 2016, 5, 171.

    32. [32]

      Liang, J.; Sun, Z. H.; Li, F.; Cheng, H. M. Energy Storage Mater. 2016, 2, 76. 

    33. [33]

      Lv, W.; Li, Z. J.; Deng, Y. Q.; Yang, Q. H.; Kang, F. Y. Energy Storage Mater. 2016, 2, 107. 

    34. [34]

      Yu, M.; Li, R.; Wu, M.; Shi, G. Energy Storage Mater. 2015, 1, 51.

    35. [35]

      Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Adv. Funct. Mater. 2014, 24, 6105. 

    36. [36]

      Zhao, Q.; Hu, X. F.; Zhang, K.; Zhang, N.; Hu, Y. X.; Chen, J. Nano Lett. 2015, 15, 721. 

    37. [37]

      Zhang, C.; Yang, Q. H. Sci. China-Mater. 2015, 58, 349. 

    38. [38]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213.

    39. [39]

       

    40. [40]

      Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Adv. Energy Mater. 2015, 5, 1402273. 

    41. [41]

      Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Small 2014, 10, 4257.

    42. [42]

      Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, R.; Zhao, C. Z.; Zhang, Q. ACS Nano 2015, 9, 6373. 

    43. [43]

      Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. 

    44. [44]

      Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155.

    45. [45]

      Sun, Y.; Zheng, G.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Chem 2016, 1, 287.

    46. [46]

      Suo, L.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481.

    47. [47]

      Zhao, C. Z.; Cheng, X. B.; Zhang, R.; Peng, H. J.; Huang, J. Q.; Ran, R.; Huang, Z. H.; Wei, F.; Zhang, Q. Energy Storage Mater. 2016, 3, 77. 

    48. [48]

      Yan, C.; Cheng, X.-B.; Zhao, C.-Z.; Huang, J.-Q.; Yang, S.-T.; Zhang, Q. J. Power Sources 2016, 327, 212. 

    49. [49]

      Huang, J. Q.; Zhang, Q.; Wei, F. Energy Storage Mater. 2015, 1, 127. 

    50. [50]

      Arora, P.; Zhang, Z. M. Chem. Rev. 2004, 104, 4419. 

    51. [51]

    52. [52]

      Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969.

    53. [53]

      Jin, Z. Q.; Xie, K.; Hong, X. B.; Hu, Z. Q.; Liu, X. J. Power Sources 2012, 218, 163. 

    54. [54]

      Yu, X.; Joseph, J.; Manthiram, A. J. Mater. Chem. A 2015, 3, 15683. 

    55. [55]

      Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian, W. Z.; Wei, F. Energy Environ. Sci. 2014, 7, 347.

    56. [56]

      Xu, W. T.; Peng, H. J.; Huang, J. Q.; Zhao, C. Z.; Cheng, X. B.; Zhang, Q. ChemSusChem 2015, 8, 2892.

    57. [57]

      Bauer, I.; Thieme, S.; Bruckner, J.; Althues, H.; Kaskel, S. J. Power Sources 2014, 251, 417. 

    58. [58]

      Yu, X.; Manthiram, A. Adv. Energy Mater. 2015, 5, 1500350. 

    59. [59]

      Bauer, I.; Kohl, M.; Althues, H.; Kaskel, S. Chem. Commun. 2014, 50, 3208.

    60. [60]

      Liu, X.; Shan, Z.; Zhu, K.; Du, J.; Tang, Q.; Tian, J. J. Power Sources 2015, 274, 85. 

    61. [61]

      Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Small 2016, 12, 381.

    62. [62]

      Hao, Z. X.; Yuan, L. X.; Li, Z.; Liu, J.; Xiang, J. W.; Wu, C.; Zeng, R.; Huang, Y. H. Electrochim. Acta 2016, 200, 197. 

    63. [63]

      Cai, W. L.; Li, G. R.; He, F.; Jin, L. M.; Liu, B. H.; Li, Z. P. J. Power Sources 2015, 283, 524.

    64. [64]

      Jin, Z. Q.; Xie, K.; Hong, X. B. RSC Adv. 2013, 3, 8889. 

    65. [65]

      Gu, M.; Lee, J.; Kim, Y.; Kim, J. S.; Jang, B. Y.; Lee, K. T.; Kim, B. S. RSC Adv. 2014, 4, 46940. 

    66. [66]

      Conder, J.; Forner-Cuenca, A.; Gubler, E. M.; Gubler, L.; Novák, P.; Trabesinger, S. ACS Appl. Mater. Interfaces 2016, 8, 18822. 

    67. [67]

      Conder, J.; Urbonaite, S.; Streich, D.; Novák, P.; Gubler, L. RSC Adv. 2015, 5, 79654.

    68. [68]

      Zeng, F.; Jin, Z.; Yuan, K.; Liu, S.; Cheng, X.; Wang, A.; Wang, W.; Yang, Y. S. J. Mater. Chem. A 2016, 4, 12319. 

    69. [69]

      Ahn, W.; Lim, S. N.; Lee, D. U.; Kim, K. B.; Chen, Z. W.; Yeon, S. H. J. Mater. Chem. A 2015, 3, 9461. 

    70. [70]

      Yim, T.; Han, S. H.; Park, N. H.; Park, M. S.; Lee, J. H.; Shin, J.; Choi, J. W.; Jung, Y.; Jo, Y. N.; Yu, J. S.; Kim, K. J. Adv. Funct. Mater. 2016, 26, 7817. 

    71. [71]

      Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343, 752. 

    72. [72]

      Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Science 2012, 335, 442. 

    73. [73]

      Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. ACS Nano 2015, 9, 3002. 

    74. [74]

      Lin, W.; Chen, Y.; Li, P.; He, J.; Zhao, Y.; Wang, Z.; Liu, J.; Qi, F.; Zheng, B.; Zhou, J.; Xu, C.; Fu, F. J. Electrochem. Soc. 2015, 162, A1624.

    75. [75]

      Wu, F.; Qian, J.; Chen, R.; Ye, Y.; Sun, Z.; Xing, Y.; Li, L. J. Mater. Chem. A 2016, 4, 17033. 

    76. [76]

      Sun, J.; Sun, Y.; Pasta, M.; Zhou, G.; Li, Y.; Liu, W.; Xiong, F.; Cui, Y. Adv. Mater. 2016, 28, 9797.

    77. [77]

      Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. Adv. Mater. 2014, 26, 625. 

    78. [78]

      Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Nature Energy 2016, 1, 16094.

    79. [79]

      Bai, S.; Zhu, K.; Wu, S.; Wang, Y.; Yi, J.; Ishida, M.; Zhou, H. J. Mater. Chem. A 2016, 4, 16812. 

    80. [80]

      Li, C. Y.; Ward, A. L.; Doris, S. E.; Pascal, T. A.; Prendergast, D.; Helms, B. A. Nano Lett. 2015, 15, 5724. 

    81. [81]

      Li, W.; Hicks-Garner, J.; Wang, J.; Liu, J.; Gross, A. F.; Sherman, E.; Graetz, J.; Vajo, J. J.; Liu, P. Chem. Mater. 2014, 26, 3403.

    82. [82]

      Yu, X. W.; Bi, Z. H.; Zhao, F.; Manthiram, A. ACS Appl. Mater. Interfaces 2015, 7, 16625. 

    83. [83]

      Zhang, Z. Y.; Lai, Y. Q.; Zhang, Z. A.; Zhang, K.; Li, J. E. Electrochim. Acta 2014, 129, 55. 

    84. [84]

      Chung, S. H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Adv. Energy Mater. 2015, 5, 1500738. 

    85. [85]

      Wei, H.; Ma, J.; Li, B. A.; Zuo, Y. X.; Xia, D. G. ACS Appl. Mater. Interfaces 2014, 6, 20276. 

    86. [86]

      Wang, Z.; Zhang, J.; Yang, Y.; Yue, X.; Hao, X.; Sun, W.; Rooney, D.; Sun, K. J. Power Sources 2016, 329, 305. 

    87. [87]

      Liu, N.; Huang, B.; Wang, W.; Shao, H.; Li, C.; Zhang, H.; Wang, A.; Yuan, K.; Huang, Y. ACS Appl. Mater. Interfaces 2016, 8, 16101. 

    88. [88]

      Shao, H.; Huang, B.; Liu, N.; Wang, W.; Zhang, H.; Wang, A.; Wang, F.; Huang, Y. J. Mater. Chem. A 2016, 4, 16627. 

    89. [89]

      Lapornik, V.; Tusar, N. N.; Ristic, A.; Chellappan, R. K.; Foix, D.; Dedryvere, R.; Gaberscek, M.; Dominko, R. J. Power Sources 2015, 274, 1239. 

    90. [90]

      Nair, J. R.; Bella, F.; Angulakshmi, N.; Stephan, A. M.; Gerbaldi, C. Energy Storage Mater. 2016, 3, 69. 

    91. [91]

      Qian, X.; Jin, L.; Zhao, D.; Yang, X.; Wang, S.; Shen, X.; Rao, D.; Yao, S.; Zhou, Y.; Xi, X. Electrochim. Acta 2016, 192, 346.

    92. [92]

      Wang, H. Q.; Zhang, W. C.; Liu, H. K.; Guo, Z. P. Angew. Chem., Int. Ed. 2016, 55, 3992. 

    93. [93]

      Zhang, Y.; Miao, L.; Ning, J.; Xiao, Z.; Hao, L.; Wang, B.; Zhi, L. 2D Mater. 2015, 2, 024013.

    94. [94]

      Cheng, X.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y.; Zhao, X. RSC Adv. 2016, 6, 89972.

    95. [95]

      Hou, T. Z.; Peng, H. J.; Huang, J. Q.; Zhang, Q.; Li, B. 2D Mater. 2015, 2, 014011.

    96. [96]

      Chang, C. H.; Chung, S. H.; Manthiram, A. J. Mater. Chem. A 2015, 3, 18829. 

    97. [97]

      Zhu, J.; Chen, C.; Lu, Y.; Zang, J.; Jiang, M.; Kim, D.; Zhang, X. Carbon 2016, 101, 272.

    98. [98]

      Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Small 2016, 12, 3283.

    99. [99]

      Fan, C. Y.; Yuan, H. Y.; Li, H. H.; Wang, H. F.; Li, W. L.; Sun, H. Z.; Wu, X. L.; Zhang, J. P. ACS Appl. Mater. Interfaces 2016, 8, 16108. 

    100. [100]

      Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Angew. Chem., Int. Ed. 2015, 54, 4325. 

    101. [101]

      Peng, H. J.; Zhang, Q. Angew. Chem., Int. Ed. 2015, 54, 11018. 

    102. [102]

      Zhou, X.; Liao, Q.; Tang, J.; Bai, T.; Chen, F.; Yang, J. J. Electroanal. Chem. 2016, 768, 55. 

    103. [103]

      Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. J. Power Sources 2016, 303, 317. 

    104. [104]

      Lin, C.; Zhang, W.; Wang, L.; Wang, Z.; Zhao, W.; Duan, W.; Zhao, Z.; Liu, B.; Jin, J. J. Mater. Chem. A 2016, 4, 5993. 

    105. [105]

      Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Angew. Chem., Int. Ed. 2016, 55, 12990. 

    106. [106]

      Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. Adv. Mater. 2015, 27, 2891. 

    107. [107]

      Song, J.; Su, D.; Xie, X.; Guo, X.; Bao, W.; Shao, G.; Wang, G. ACS Appl. Mater. Interfaces 2016, 8, 29427. 

    108. [108]

      Chung, S. H.; Chang, C. H.; Manthiram, A. Small 2016, 12, 939.

    109. [109]

      Chung, S. H.; Manthiram, A. J. Phys. Chem. Lett. 2014, 5, 1978. 

    110. [110]

      Chung, S. H.; Manthiram, A. Adv. Mater. 2014, 26, 7352.

    111. [111]

      Chung, S. H.; Manthiram, A. Adv. Funct. Mater. 2014, 24, 5299. 

    112. [112]

      Zhang, Z.; Lai, Y.; Zhang, Z.; Li, J. Solid State Ionics 2015, 278, 166.

    113. [113]

      Wang, Q.; Wen, Z.; Yang, J.; Jin, J.; Huang, X.; Wu, X.; Han, J. J. Power Sources 2016, 306, 347. 

    114. [114]

      Zhu, J.; Ge, Y.; Kim, D.; Lu, Y.; Chen, C.; Jiang, M.; Zhang, X. Nano Energy 2016, 20, 176.

    115. [115]

      Zhao, D.; Qian, X.; Jin, L.; Yang, X.; Wang, S.; Shen, X.; Yao, S.; Rao, D.; Zhou, Y.; Xi, X. RSC Adv. 2016, 6, 13680.

    116. [116]

      Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Adv. Funct. Mater. 2015, 25, 5285. 

    117. [117]

      Zhang, Z.; Wang, G. C.; Lai, Y. Q.; Li, J.; Zhang, Z. Y.; Chen, W. J. Power Sources 2015, 300, 157. 

    118. [118]

      Wang, G. C.; Lai, Y. Q.; Zhang, Z. A.; Li, J.; Zhang, Z. Y. J. Mater. Chem. A 2015, 3, 7139. 

    119. [119]

      Luo, L.; Chung, S. H.; Manthiram, A. J. Mater. Chem. A 2016, 4, 16805. 

    120. [120]

      Chen, Y. L.; Liu, N. Q.; Shao, H. Y.; Wang, W. K.; Gao, M. Y.; Li, C. M.; Zhang, H.; Wang, A. B.; Huang, Y. Q. J. Mater. Chem. A 2015, 3, 15235. 

    121. [121]

      Zhou, G.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S.; Li, F.; Cheng, H. M. Adv. Mater. 2015, 27, 641. 

    122. [122]

      Wang, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Chem. Commun. 2015, 51, 6996. 

    123. [123]

      Zhu, J.; Yanilmaz, M.; Fu, K.; Chen, C.; Lu, Y.; Ge, Y.; Kim, D.; Zhang, X. J. Membrane Sci. 2016, 504, 89. 

    124. [124]

      Li, Z.; Jiang, Q. Q.; Ma, Z. L.; Liu, Q. H.; Wu, Z. J.; Wang, S. Y. RSC Adv. 2015, 5, 79473. 

    125. [125]

      Li, G. C.; Jing, H. K.; Su, Z.; Lai, C.; Chen, L.; Yuan, C. C.; Li, H. H.; Liu, L. J. Mater. Chem. A 2015, 3, 11014. 

    126. [126]

      Zhang, Z.; Zhang, Z.; Li, J.; Lai, Y. J. Solid State Electr. 2015, 19, 1709. 

    127. [127]

      Ma, G.; Huang, F.; Wen, Z.; Wang, Q.; Hong, X.; Jin, J.; Wu, X. J.Mater. Chem. A 2016, 4, 16968. 

    128. [128]

      Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Energy Environ. Sci. 2014, 7, 3381.

    129. [129]

      Peng, H. J.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. Adv. Sci. 2016, 3, 1500268.

    130. [130]

      Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. Adv. Mater. 2016, 28, 9551.

    131. [131]

      Wu, F.; Ye, Y.; Chen, R.; Qian, J.; Zhao, T.; Li, L.; Li, W. Nano Lett. 2015, 15, 7431.

    132. [132]

      Kim, J. S.; Hwang, T. H.; Kim, B. G.; Min, J.; Choi, J. W. Adv. Funct. Mater. 2014, 24, 5359. 

    133. [133]

      Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2016, 28, 2888.

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(140)
  • Abstract views(4970)
  • HTML views(725)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return