Citation: Li Wenqiang, Peng Qian, Xie Yujun, Zhang Tian, Shuai Zhigang. Effect of Intermolecular Excited-state Interaction on Vibrationally Resolved Optical Spectra in Organic Molecular Aggregates[J]. Acta Chimica Sinica, ;2016, 74(11): 902-909. doi: 10.6023/A16080452 shu

Effect of Intermolecular Excited-state Interaction on Vibrationally Resolved Optical Spectra in Organic Molecular Aggregates

  • Corresponding author: Peng Qian, qpeng@iccas.ac.cn Shuai Zhigang, zgshuai@tsinghua.edu.cn
  • Received Date: 30 August 2016

    Fund Project: the National Natural Science Foundation of China 21290191Ministry of Science and Technology of China through the 973 program 2013CB834703and the Strategic Priority Research Program of the Chinese Academy of Sciences XDB12020200the National Natural Science Foundation of China 21473214Ministry of Science and Technology of China through the 973 program 2013CB933503Ministry of Science and Technology of China through the 973 program 2015CB65502the National Natural Science Foundation of China 91233105

Figures(10)

  • The optical spectra are effective means to reveal the molecular interactions and the luminescent mechanism of the organic molecules in aggregates. Herein, we systematically investigate the crystalline state vibrationally resolved absorption and emission spectra for a series of AIEgens and non-AIEgens by considering intermolecular excited state interaction by using Frenkel-exciton model coupled with quantum mechanics and molecular mechanics (QM/MM) calculations. It is found that the competition between the intramolecular vibronic coupling (λ) and the intermolecular exciton coupling (J) governs the crystalline aggregate spectral characters. At room temperature, when J/λ value is larger than a critical value (ca. 0.17), the exciton coupling would have a large effect on the optical spectra. For face-to-face H-aggregates, only when both intermolecular electrostatic and excitonic couplings are considered, can one obtain calculated vibrationally resolved spectra and well reproduce the experimental results, namely, remarkable blue-shift in absorption but much less red-shift in emission when compared with the gas-phase. The optical spectra of the AIE-active aggregates are determined by the intramolecular vibronic coupling because the ratio J/λ is less than the critical value.
  • 加载中
    1. [1]

      Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913; (b) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539; (c) Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C. Science 2014, 345, 1487; (d) Lee, J.; Chen, H.-F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Nat. Mater. 2016, 15, 92.

    2. [2]

      Schäfer, F. P.; Schmidt, W.; Volze, J. Appl. Phys. Lett. 1966, 9, 306; (b) Morales-Vidal, M.; Boj, P. G.; Villalvilla, J. M.; Quintana, J. A.; Yan, Q.; Lin, N.-T.; Zhu, X.; Ruangsupapichat, N.; Casado, J.; Tsuji, H.; Nakamura, E.; Diaz-Garcia, M. A. Nat. Commun. 2015, 6, 8458.

    3. [3]

      Horowitz, G. Adv. Mater. 1998, 10, 365; (b) Liu, J.; Zhang, H.; Dong, H.; Meng, L.; Jiang, L.; Jiang, L.; Wang, Y.; Yu, J.; Sun, Y.; Hu, W.; Heeger, A. J. Nat. Commun. 2015, 6, 10032.

    4. [4]

      Gaylord, B. S.; Heeger, A. J.; Bazan, G. C. PNAS 2002, 99, 10954; (b) Rana, S.; Elci, S. G.; Mout, R.; Singla, A. K.; Yazdani, M.; Bender, M.; Bajaj, A.; Saha, K.; Bunz, U. H. F.; Jirik, F. R.; Rotello, V. M. J. Am. Chem. Soc. 2016, 138, 4522.

    5. [5]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789; (b) Page, Z. A.; Liu, Y.; Duzhko, V. V.; Russell, T. P.; Emrick, T. Science 2014, 346, 441; (c) Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C. H.; Dimitrov, S. D.; Shang, Z. R.; Gasparini, N.; Alamoudi, M.; Laquai, F.; Brabec, C. J.; Salleo, A.; Durrant, J. R.; McCulloch, I. Nat. Commun. 2016, 7, 11; (d) Rong, Y.; Mei, A.; Liu, L.; Li, X.; Han, H. Acta Chim. Sinica 2015, 73, 237. (荣耀光, 梅安意, 刘林峰, 李雄, 韩宏伟, 化学学报, 2015, 73, 237.) (e) Fu, Y.-T.; Yi, Y.; Coropceanu, V.; Risko, C.; Aziz, S. G.; Brédas, J.-L. Sci. China Chem. 2014, 57, 1330.

    6. [6]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    7. [7]

      Valeur, B.; Berberan-Santos, M. N. Molecular Fluorescence, Wiley-VCH, Weinheim, 2012, pp. 141~179.

    8. [8]

      Kasha, M. Radiat. Res. 1963, 20, 55; (b) Kasha, M.; Rawls, H.; El-Bayoumi, M. A. Pure Appl. Chem. 1965, 11, 371.

    9. [9]

      Spano, F. C. Acc. Chem. Res. 2010, 43, 429; (b) Spano, F. C. J. Chem. Phys. 2003, 118, 981; (c) Spano, F. C. Phys. Rev. B 2005, 71, 094110; (d) Spano, F. C. Annu. Rev. Phys. Chem. 2006, 57, 217.

    10. [10]

      Wykes, M.; Parambil, R.; Beljonne, D.; Gierschner, J. J. Chem. Phys. 2015, 143, 114116; (b) Gierschner, J.; Ehni, M.; Egelhaaf, H.-J.; Milián Medina, B.; Beljonne, D.; Benmansour, H.; Bazan, G. C. J. Chem. Phys. 2005, 123, 144914.

    11. [11]

      Gao, F.; Liang, W.; Zhao, Y. Sci. China Chem. 2010, 53, 297.  doi: 10.1007/s11426-010-0075-2

    12. [12]

      Wu, Q.; Zhang, T.; Peng, Q.; Wang, D.; Shuai, Z. Phys. Chem. Chem. Phys. 2014, 16, 5545. (b) Wu, Q.; Peng, Q.; Zhang, T.; Shuai, Z. Sci. China Chem. 2013, 43, 1078.

    13. [13]

      Kasha, M. Discuss. Faraday Soc. 1950, 9, 14.  doi: 10.1039/df9500900014

    14. [14]

      Niu, Y.; Peng, Q.; Deng, C.; Gao, X.; Shuai, Z. J. Phys. Chem. A 2010, 114, 7817;

    15. [15]

      Zhang, T.; Peng, Q.; Quan, C.; Nie, H.; Niu, Y.; Xie, Y.; Zhao, Z.; Tang, B. Z.; Shuai, Z. Chem. Sci. 2016, 7, 5573; (b) Wu, C. C.; Korovyanko, O. J.; Delong, M. C.; Vardeny, Z. V.; Ferraris, J. P. Synth. Met. 2003, 139, 735.

    16. [16]

      Yassar, A.; Horowitz, G.; Valat, P.; Wintgens, V.; Hmyene, M.; Deloffre, F.; Srivastava, P.; Lang, P.; Garnier, F. J. Phys. Chem. 1995, 99, 9155; (b) Stradomska, A.; Petelenz, P. J. Chem. Phys. 2009, 130, 094705.

    17. [17]

      Mason, R. Acta Crystallogr. 1964, 17, 547; (b) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042; (c) Li, H.; Duan, L.; Zhang, D.; Dong, G.; Wang, L.; Qiu, Y. Sci. China Ser. B:Chem. 2009, 52, 181.

    18. [18]

      Gao, F.; Liang, W. Z.; Zhao, Y. J. Phys. Chem. A 2009, 113, 12847; (b) Mitrofanov, O.; Kloc, C.; Siegrist, T.; Lang, D. V.; So, W.-Y.; Ramirez, A. P. Appl. Phys. Lett. 2007, 91, 212106.

    19. [19]

      Wu, Q.; Deng, C.; Peng, Q.; Niu, Y.; Shuai, Z. J. Comput. Chem. 2012, 33, 1862; (b) Qin, A.; Lam, J. W. Y.; Mahtab, F.; Jim, C. K. W.; Tang, L.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Appl. Phys. Lett. 2009, 94, 253308.

    20. [20]

      Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Chem. Commun. 2007, 31, 3255.

    21. [21]

      Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Chem. Mater. 2003, 15, 1535.  doi: 10.1021/cm021715z

    22. [22]

      Xie, Y.; Zhang, T.; Li, Z.; Peng, Q.; Yi, Y.; Shuai, Z. Chem. Asian J. 2015, 10, 2154; (b) Zhan, X.; Haldi, A.; Risko, C.; Chan, C. K.; Zhao, W.; Timofeeva, T. V.; Korlyukov, A.; Antipin, M. Y.; Montgomery, S.; Thompson, E.; An, Z.; Domercq, B.; Barlow, S.; Kahn, A.; Kippelen, B.; Bredas, J.-L.; Marder, S. R. J. Mater. Chem. 2008, 18, 3157.

    23. [23]

      Zhao, Z.; Liu, D.; Mahtab, F.; Xin, L.; Shen, Z.; Yu, Y.; Chan, C. Y. K.; Lu, P.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Yang, B.; Ma, Y.; Tang, B. Z. Chem.-Eur. J. 2011, 17, 5998.  doi: 10.1002/chem.v17.21

    24. [24]

      Zhang, T.; Jiang, Y.; Niu, Y.; Wang, D.; Peng, Q.; Shuai, Z. J. Phys. Chem. A 2014, 118, 9094. (b) Zhan, X. W.; Risko, C.; Amy, F.; Chan, C.; Zhao, W.; Barlow, S.; Kahn, A.; Bredas, J.-L.; Marder, S. R. J. Am. Chem. Soc. 2005, 127, 9021.

    25. [25]

      Hsu, C.-P.; You, Z.-Q.; Chen, H.-C. J. Phys. Chem. C 2008, 112, 1204.  doi: 10.1021/jp076512i

    26. [26]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648; (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    27. [27]

      Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.  doi: 10.1002/(ISSN)1096-987X

    28. [28]

      Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjøvoll, M.; Fahmi, A.; Schäfer, A.; Lennartz, C. J. Mol. Struct. THEOCHEM 2003, 632, 1.  doi: 10.1016/S0166-1280(03)00285-9

    29. [29]

      TURBOMOLE V6.52013, University of Karlsruhe and of the Forschungszentrum Karlsruhe GmbH, 1989-2007; TURBOLE GmbH, since 2007(accessed May 23, 2013); (b) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.

    30. [30]

      Smith, W.; Forester, T. R. J. Mol. Graphics 1996, 14, 136.  doi: 10.1016/S0263-7855(96)00043-4

    31. [31]

      Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.  doi: 10.1016/j.cplett.2004.06.011

    32. [32]

      Shuai, Z.; Peng, Q.; Niu, Y.; Geng, H.; MOMAP, Revision 0.3.001 ed.; MOMAP:a free and open-source molecular materials property prediction package; avaliable online:http://www.shuaigroup.net, Beijing, China, 2016.

    33. [33]

      Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. Comput. Phys. Commun. 2010, 181, 1477.  doi: 10.1016/j.cpc.2010.04.018

    34. [34]

      Gierschner, J.; Mack, H. G.; Egelhaaf, H. J.; Schweizer, S.; Doser, B.; Oelkrug, D. Synth. Met. 2003, 138, 311.  doi: 10.1016/S0379-6779(03)00030-4

  • 加载中
    1. [1]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    2. [2]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    3. [3]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    4. [4]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    5. [5]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    6. [6]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    7. [7]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    8. [8]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    9. [9]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    10. [10]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    11. [11]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    12. [12]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    13. [13]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    14. [14]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    15. [15]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    18. [18]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    19. [19]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    20. [20]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

Metrics
  • PDF Downloads(0)
  • Abstract views(1244)
  • HTML views(238)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return