Citation: Huang Yuzhang, Lei Luoqi, Zheng Chao, Wei Bo, Zhao Zujin, Qin Anjun, Hu Rongrong, Tang Ben Zhong. Tetraphenylethene-Containing Alkynone Derivatives: Design and Synthesis, Aggregation-Induced Emission Characteristics, and the Selective Fluorescence Detection of Pd2+[J]. Acta Chimica Sinica, ;2016, 74(11): 885-892. doi: 10.6023/A16080435 shu

Tetraphenylethene-Containing Alkynone Derivatives: Design and Synthesis, Aggregation-Induced Emission Characteristics, and the Selective Fluorescence Detection of Pd2+

  • Corresponding author: Hu Rongrong, msrrhu@scut.edu.cn Tang Ben Zhong, tangbenz@ust.hk
  • Received Date: 25 August 2016

    Fund Project: National Basic Research Program of China 973 Program; 2013CB834701the Innovation and Technology Commission ITC-CNERC14S01the Guangdong Natural Science Funds 2016A030306045the Fundamental Research Funds for the Central Universities 2015ZY013and the Guangdong Innovative Research Team Program 201101C0105067115the National Natural Science Foundation of China 21404041the National Natural Science Foundation of China 21490573the National Natural Science Foundation of China 21490574the Fundamental Research Funds for the Central Universities 2015ZJ002

Figures(6)

  • Organic luminescent materials with aggregation-induced emission (AIE) characteristics have attracted much attention among the scientists in the fields of optoelectronic devices and fluorescence biotechnology. AIE materials overcomes the aggregation-caused quenching problem of traditional organic fluorescent compounds, which possess high fluorescence quantum efficiency in the aggregated states. Thanks to the great research effort of worldwide scientists, a large variety of AIE materials have been developed and the underlying mechanism has been rapidly explored. The deep understanding of the structure-property relationship of AIE compounds is still in an urgent demand for the design of new materials. In this work, based on the classical propeller-shaped AIEgen, tetraphenylethene (TPE), we designed and synthesized a series of electron donor/acceptor-containing alkynone derivatives with AIE feature such as cyano, nitro, butyl and butoxyl groups-substituted alkynone derivatives. Their chemical structures have been fully characterized by 1H NMR, 13C NMR, IR, and HRMS spectra, providing satisfactory analysis results. Their photophysical properties are systematically studied and the effect of substitution groups on the emission maximum, emission efficiency, as well as AIE property are discussed, respectively. Their emission maxima are located at 511~565 nm with the fluorescence quantum yields of up to 31% in the aggregated states in THF/water mixtures with high water content. The fluorescence intensity of the unsubstituted TPE-containing alkynone derivative in THF/H2O with φw=90% water content is 157 times higher than that in THF solution. It is suggested that both electron-donating and electron-withdrawing substitution groups on the terminal phenyl ring decrease the emission efficiency of the aggregated state and the introduction of nitro group dramatically quenches the emission while redshifts the emission maximum. Most importantly, the alkynone groups in these compounds can selectively coordinate with Pd2+ among a large variety of metal ions, which quench the emission of the nanoaggregates and possess high sensitivity towards Pd2+, demon-strating the potential application as an efficient Pd2+ fluorescent sensor.
  • 加载中
    1. [1]

      Chen, H. C.; Ching, K. C.; Fang, M. H.; Ching, F. S.; Pi, T. C.; Chin, H. L. Adv. Funct. Mater. 2009, 19, 560. (b) You, S.; Cai, Q.; Zheng, Y.; He, B.; Shen, J.; Yang, W.; Yin, M. ACS Appl. Mater. Interfaces 2014, 6, 16327.

    2. [2]

      Jenekhe, S. A.; Osaheni, J. A. Science 1994, 265, 765. (b) Chen, C. T. Chem. Mater. 2004, 16, 4389.

    3. [3]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332.
       

    4. [4]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.
       

    5. [5]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    6. [6]

      Li, S.; Langenegger, S. M.; Häner, R. Chem. Commun. 2013, 49, 5835.  doi: 10.1039/c3cc42706d

    7. [7]

      Singh, A.; Lim, C. K.; Lee, Y. D.; Maeng, J. H.; Lee, S.; Koh, J.; Kim, S. ACS Appl. Mater. Interfaces 2013, 5, 8881. (b) Xi, W.; Gong, Y.; Mei, B.; Zhang, X.; Zhang, Y.; Chen, B.; Wu, J.; Tian, Y.; Zhou, H. Sensors and Actuators B 2014, 205, 158.

    8. [8]

      Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Lu, R. Acta Chim. Sinica 2016, 74, 165. (孙静波, 张恭贺, 贾小宇, 薛鹏冲, 贾俊辉, 卢然, 化学学报, 2016, 74, 165.) (b) Jackson, S. L.; Rananaware, A.; Rix, C.; Bhosale, S. V.; Latham, K. Cryst. Growth Des. 2016, 16, 3067.

    9. [9]

      Aldred, M. P.; Li, C.; Zhang, G. F.; Gong, W. L.; Li, A. D.; Dai, Y.; Ma, D.; Zhu, M. Q. J. Mater. Chem. 2012, 22, 7515.  doi: 10.1039/c2jm30261f

    10. [10]

      Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899. (b) Wu, P. T.; Kim, F. S.; Jenekhe, S. A. Chem. Mater. 2011, 23, 4618. (c) Ahmed, E.; Subramaniyan, S.; Kim, F. S.; Xin, H.; Jenekhe, S. A. Macromolecules 2011, 44, 7207. (d) Ahmed, E.; Ren, G.; Kim, F. S.; Hollenbeck, E. C.; Jenekhe, S. A. Chem. Mater. 2011, 23, 4563.

    11. [11]

      Kim, E.; Park, S. B. Chem. Asian J. 2009, 4, 1646. (b) Tao, S.; Li, L.; Yu, J.; Jiang, Y.; Zhou, Y.; Lee, C. S.; Lee, S. T.; Zhang, X.; Kwon, O. Chem. Mater. 2009, 21, 1284. (c) Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74, 351. (夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74, 351.)

    12. [12]

      Zhao, Q.; Zhang, X. A.; Wei, Q.; Wang, J.; Shen, X. Y.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Commun. 2012, 48, 11671. (b) Yu, W.; Wu, Y.; Chen, J.; Duan, X.; Jiang, X. F.; Qiu, X.; Li, Y. RSC Adv. 2016, 6, 51257.

    13. [13]

      Cho, D. G.; Sessler, J. L. Chem. Soc. Rev. 2009, 38, 1647. (b) Kielhorn, J.; Melber, C.; Keller, D.; Mangelsdorf, I. Int. J. Hyg. Environ. Health 2002, 205, 417.

    14. [14]

      Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780. (b) Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Chem. Rev. 2013, 113, 192.

    15. [15]

      Chen, X.; Li, H.; Jin, L.; Yin, B. Tetrahedron Lett. 2014, 55, 2537. (b) Cui, H.; Chen, H.; Pan, Y.; Lin, W. A. Sensors and Actuators B 2015, 219, 232.

    16. [16]

      Wang, Z.; Lu, X. Chem. Commun. 1996, 535.

    17. [17]

      Yuan, W. Z.; Yu, Z. Q.; Tang, Y.; Lam, J. W.; Xie, N.; Lu, P.; Chen, E. Q.; Tang, B. Z. Macromolecules 2011, 44, 9618.  doi: 10.1021/ma2021979

    18. [18]

      Liu, J.; Zhong, Y.; Lu, P.; Hong, Y.; Hong, Y.; Lam, J. W.; Faisal, M.; Yu, Y.; Wong, K. S.; Tang, B. Z. Polym. Chem. 2010, 1, 426.  doi: 10.1039/c0py00046a

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(0)
  • Abstract views(1647)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return