Citation: Ji Guang, Yan Lulin, Wang Hui, Ma Lian, Xu Bin, Tian Wenjing. Efficient Near-infrared AIE Nanoparticles for Cell Imaging[J]. Acta Chimica Sinica, ;2016, 74(11): 917-922. doi: 10.6023/A16080430 shu

Efficient Near-infrared AIE Nanoparticles for Cell Imaging

  • Corresponding author: Xu Bin, xubin@jlu.edu.cn Tian Wenjing, wjtian@jlu.edu.cn
  • Received Date: 24 August 2016

    Fund Project: the Natural Science Foundation of China 21221063and Program for Chang Jiang Scholars and Innovative Research Team in University IRT101713018the Natural Science Foundation of China 51573068the Natural Science Foundation of China 51373063Project supported by 973 Program 2013CB834701

Figures(8)

  • Near-infrared fluorescence signals are highly desirable to acheieve high resolution in biological imaging. We encapsulated hydrophobic AIE (aggregation-induced emission) fluorophores into the biocompatible Pluronic F-127 NPs for cellular imaging and efficiently enhance the near-infrared AIE fluorophore emission. AIE molecule 2-(4-bromophenyl)-3-(4-(4-(diphenylamino) styryl) phenyl) fumaronitrile (TPABDFN) with near-infrared emission was synthesized and selected as the fluorescence resonance energy transfer (FRET) acceptor. (2-p-tolylethene-1, 1, 2-triyl) tribenzene (TPE-Me) was a blue-emitting AIE molecule, which spectrum was matching with TPABDFN. TPE-Me@F127 NPs emission was 480 nm, TPABDFN@F127 NPs maximum absorption wavelength was also 480 nm, that the absorption had a large area of overlapping with the TPE-Me@F127 NPs emission spectrum and leaded to efficient energy transfer, so TPE-Me was selected as the FRET donor. By encapsulating both TPE-Me donor and TPABDFN acceptor simultaneously within the NPs, a significant FRET effect was induced. FRET pairs of different ratios was co-encapsulated into the F127 NPs to optimize the fluorescence signals. The maximum of fluorescence quantum yield was 19.9%, energy transfer efficiency was 43.5%. TPABDFN@F127 NPs only had weak fluorescence, but the TPABDFN/TPE-Me@F127 NPs showed bright fluorescence signal. Fluorescence resonance energy transfer contributed to the notable increase of acceptor emission The fluorescence quantum yield had 10-fold enhancement of the TPABDFN. In addition, the obtained TPABDFN/TPE-Me@F127 NPs showed a large Stokes shift of 265 nm, which can be used to avoid the interference between excitation and emission light, as well as the near-infrared emission spectrum away from the organism auto-fluorescence, which was beneficial for the bio-application. Fluorescent probe emission in the far red/near-infrared (FR/NIR) (650~900 nm) region for biological detection also can greatly reduce the damage to living body. And TPABDFN/TPE-Me@F127 NPs had low cytotoxicity, good biocompatibility, stability and anti-photobleaching. The TPABDFN/TPE-Me@F127 NPs achieved good imaging result on HepG2 cell cytoplasm.
  • 加载中
    1. [1]

      Luo, S.; Zhang, E.; Su, Y. Biomaterials 2011, 32, 7127.  doi: 10.1016/j.biomaterials.2011.06.024

    2. [2]

      Frangioni, J. V. Curr. Opin. Chem. Biol. 2003, 7, 626.  doi: 10.1016/j.cbpa.2003.08.007

    3. [3]

      Liu, J.; Geng, J.; Liu, B. Chem. Commun. 2013, 49, 1491.  doi: 10.1039/C2CC37219C

    4. [4]

      Ghoroghchian, P. P.; Frail, P. R.; Susumu, K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 2922.  doi: 10.1073/pnas.0409394102

    5. [5]

      Geng, J.; Li, K.; Pu, K. Y. Small 2012, 8, 2421.  doi: 10.1002/smll.v8.15

    6. [6]

      He, X.; Wang, K.; Cheng, Z. WIRES Nanomed Nano 2010, 2, 349.  doi: 10.1002/wnan.85

    7. [7]

      Lu, H. G.; Xu, B.; Tian, W. J. Angew. Chem. Int. Ed. 2016, 55, 155.  doi: 10.1002/anie.201507031

    8. [8]

      Zhang, Y.; Wu, C. F.; Tian, W. J. RSC Adv. 2015, 5, 36837.  doi: 10.1039/C5RA04669F

    9. [9]

      Gao, G. B.; Gong, D. J.; Zhang, M. X. Acta Chim. Sinica 2016, 74, 363. 

    10. [10]

      Zrazhevskiy, P.; Sena, M.; Gao, X. Chem. Soc. Rev. 2010, 39, 4326.  doi: 10.1039/b915139g

    11. [11]

      Gao, J.; Chen, K.; Luong, R. Nano Lett. 2011, 12, 281.

    12. [12]

      Michalet, X.; Pinaud, F.; Bentolila, L. Science 2005, 307, 538.  doi: 10.1126/science.1104274

    13. [13]

      Cui, X. T.; Lv, Y. Y.; Liu, Y. Acta Chim. Sinica 2014, 72, 75. 

    14. [14]

      Santra, S.; Zhang, P.; Wang, K. Anal. Chem. 2001, 73, 4988.  doi: 10.1021/ac010406+

    15. [15]

      Wu, X.; Chang, S.; Sun, X. Chem. Sci. 2013, 4, 1221.  doi: 10.1039/c2sc22035k

    16. [16]

      Shi, C.; Guo, Z.; Yan, Y. ACS Appl. Mater. Interfaces 2012, 5, 192.

    17. [17]

      Gao, X.; Yang, L.; Petros, J. A. Curr. Opin. Chem. Biol. 2005, 16, 63.

    18. [18]

      Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S. Nat. Methods 2008, 5, 763.  doi: 10.1038/nmeth.1248

    19. [19]

      Smith, A.; Duan, H.; Mohs, A. Adv. Drug Deliver. Rev. 2008, 60, 1226.  doi: 10.1016/j.addr.2008.03.015

    20. [20]

      Jamieson, T.; Bakhshi, R.; Petrova, D. Biomaterials 2007, 28, 4717.  doi: 10.1016/j.biomaterials.2007.07.014

    21. [21]

      Wang, L.; Tan, W. Nano Lett. 2006, 6, 84.  doi: 10.1021/nl052105b

    22. [22]

      Schadlich, A.; Caysa, H.; Mueller, T. ACS Nano 2011, 5, 8710.  doi: 10.1021/nn2026353

    23. [23]

      Lee, C. H. Cheng, S. H.; Wang, Y. J. Adv. Funct. Mater. 2009, 19, 215.  doi: 10.1002/adfm.v19:2

    24. [24]

      Altınoğlu, E.; Adair, J. H WIRES Nanomed. Nanobi. 2010, 2, 461.  doi: 10.1002/wnan.77

    25. [25]

      Yan, L. L.; Xu, B.; Tian, W. J. Nanoscale 2016, 8, 2471.  doi: 10.1039/C5NR05051K

    26. [26]

      Thomas, S.; Joly, G.; Swager, T. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    27. [27]

      Brasseur, N.; Nguyen, T.; Langlois, R. J. Med. Chem. 1994, 37, 415.  doi: 10.1021/jm00029a014

    28. [28]

      Mei, J.; Leung, N.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    29. [29]

      Luo, J.; Xie, Z.; Lam, J. W. Chem. Commun. 2001, 18, 1740.

    30. [30]

      Hong, Y.; Lam, J. W.; Tang, B. Z. Chem. Commun. 2009, 29, 4332.

    31. [31]

      Wang, M.; Zhang, D.; Zhang, G. Chem. Commun. 2008, 37, 4469.

    32. [32]

      Hong, Y.; Lam, J.; Tang, B. Z. Chem. Soc. Rev. 2011, 40. 5361.  doi: 10.1039/c1cs15113d

    33. [33]

      Wang, M.; Zhang, G.; Zhang, D. J. Mater. Chem. 2010, 20, 1858.  doi: 10.1039/b921610c

    34. [34]

      Chen J. L.; Xu, B.; Tian, W. J. ACS Photonics 2015, 2, 313.  doi: 10.1021/ph5004384

    35. [35]

      Zhang, Y.; Xu, B.; Tian, W. J. Polym. Chem. 2014, 5, 3824.  doi: 10.1039/c4py00075g

    36. [36]

      Qi, Q. K.; Xu, B.; Tian, W. J. Adv. Funct. Mater. 2015, 25, 4005.  doi: 10.1002/adfm.v25.26

    37. [37]

      Zhang, J. B.; Xu, B.; Tian, W. J. Adv. Mater. 2014, 26, 739.  doi: 10.1002/adma.201303639

    38. [38]

      Zhang, J. B.; Xu, B.; Tian, W. J. Chem. Commun. 2013, 49, 3878.  doi: 10.1039/c3cc41171k

    39. [39]

      Zhao, Z.; Geng, J.; Chang, Z. J. Mater. Chem. 2012, 22, 11018.  doi: 10.1039/c2jm31482g

    40. [40]

      Qin, W.; Ding, D.; Liu, J. Adv. Funct. Mater. 2012, 22, 771.  doi: 10.1002/adfm.201102191

    41. [41]

      Geng, J.; Li, K.; Ding, D. Small 2012, 8, 3655.  doi: 10.1002/smll.v8.23

    42. [42]

      Geng, J.; Li, K.; Qin, W. Small 2013, 9, 2012.  doi: 10.1002/smll.v9.11

    43. [43]

      Shi, H.; Liu, J.; Geng, J. J. Am. Chem. Soc. 2012, 134, 9569.  doi: 10.1021/ja302369e

    44. [44]

      Wang, M.; Gu, X.; Zhang, G. Anal. Chem. 2009, 81, 4444.  doi: 10.1021/ac9002722

    45. [45]

      Liu, L.; Zhang, G.; Xiang, J. Org. Lett. 2008, 10, 4581.  doi: 10.1021/ol801855s

    46. [46]

      Li, X.; Xu, B.; Tian, W. J. Anal. Chem. 2014, 86, 298.  doi: 10.1021/ac403629t

    47. [47]

      Ma, K.; Xu, B.; Tian, W. J. Anal. Bioanal. Chem. 2015, 407, 2625.  doi: 10.1007/s00216-015-8467-y

    48. [48]

      Qian, J.; Zhu, Z. F.; Qin, A. J. Adv. Mater. 2015, 27, 2332.  doi: 10.1002/adma.v27.14

    49. [49]

      Wang, Y. L.; Hu, R. R.; Xu, W. Biomed. Opt. Express. 2015, 6, 3783.  doi: 10.1364/BOE.6.003783

    50. [50]

      Jin, Y.; Ye, F.; Zeigler, M. ACS Nano 2011, 5, 1468.  doi: 10.1021/nn103304m

    51. [51]

      Chung, C. Y.-S.; Yam, V. W.-W. Chem. Sci. 2013, 4, 377.  doi: 10.1039/C2SC20897K

    52. [52]

      Xu, Y.; Zhang, H.; Li, F. J. Mater. Chem. 2012, 22, 1592.  doi: 10.1039/C1JM14815J

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    3. [3]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    12. [12]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(0)
  • Abstract views(2037)
  • HTML views(577)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return