Citation: Guan Weijiang, Zhou Wenjuan, Lü Chao. Ultrathin Luminescence Film Based on Gold Nanoclusters with Aggregation-Induced Emission[J]. Acta Chimica Sinica, ;2016, 74(11): 929-934. doi: 10.6023/A16080427 shu

Ultrathin Luminescence Film Based on Gold Nanoclusters with Aggregation-Induced Emission

  • Corresponding author: Lü Chao, luchao@mail.buct.edu.cn
  • Received Date: 24 August 2016

    Fund Project: National Basic Research Program of China No. 2014CB932103National Basic Research Program of China 973 Programand the National Natural Science Foundation of China 21575010and the National Natural Science Foundation of China 21375006

Figures(7)

  • Solution-based fluorescent probes usually need to be fabricated into fluorescent films for device application. The fabricated fluorescent films can have not only the original advantages of probes (e.g., high sensitivity and selectivity) but also several unique properties, such as tunable shape and size, recycling, non-invasion, good stability and portability, and real-time detection. However, the sensitivity of fluorescent films is often reduced by the aggregation-caused quenching (ACQ) effect during the film formation:fluorophores with high concentration inherently tend to aggregate through intermolecular π-π in-teractions. Moreover, the sensing performances of the fluorescent film are significantly influenced by the diffusion rate of analytes:the thicker the films, the slower the response time towards target molecules. Therefore, aggregation-induced emission (AIE) materials are urgently needed to be developed to overcome these shortcomings. On the other hand, excellent photostability could be better for the practical applications in the integrated sensor devices. However, most of the present AIEgens are π-conjugated organic molecules with poor ability against photobleaching. Interestingly, several fluorescent gold nanoclusters (AuNCs) with higher photostability were discovered to have AIE property. In this work, two kinds of negatively-charged fluorescent AuNCs were selected:bovine serum albumin capped AuNCs (BSA-AuNCs) and AIE-active glutathione capped AuNCs (GSH-AuNCs). Quartz glass slides were alternately dipped into a poly (allylamine) (PAH) solution and AuNCs solutions to fabricate GSH-AuNCs/PAH (yellow-emitting) and BSA-AuNCs/PAH (red-emitting) fluorescent ultrathin films, respectively. As expected, the photoluminescence quantum yield of GSH-AuNCs is two-fold higher in GSH-AuNCs/PAH ultrathin films than in solution. The fluorescence of (GSH-AuNCs/PAH)5 ultrathin film could be quenched effectively by 2, 4, 6-trinitrotoluene (TNT) in 10 min, while the fluorescence intensity of (BSA-AuNCs/PAH)25 ultrathin film remain almost unchanged. Based on this phenomenon, a novel ratio fluorescence sensing system was constructed by using (BSA-AuNCs/PAH)25 ultrathin film as control and (GSH-AuNCs/PAH)5 ultrathin film as the detection unit. The fluorescence intensity ratios (I565/I620) have a linear relationship with the log concentrations of TNT in the range of 10-6~10-9 mol/L with detection limit of 1.0×10-10 mol/L.
  • 加载中
    1. [1]

      Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993.  doi: 10.1039/b609548h

    2. [2]

      Li, X. H.; Gao, X. H.; Shi, W.; Ma, H. M. Chem. Rev. 2014, 114, 590.  doi: 10.1021/cr300508p

    3. [3]

      Thomas Ⅲ, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    4. [4]

      Ding, L.; Fang, Y. Chem. Soc. Rev. 2010, 39, 4258.  doi: 10.1039/c003028g

    5. [5]

      Stich, M. I. J.; Fischer, L. H.; Wolfbeis, O. S. Chem. Soc. Rev. 2010, 39, 3102.  doi: 10.1039/b909635n

    6. [6]

      Guan, W. J.; Zhou, W. J.; Lu, J.; Lu, C. Chem. Soc. Rev. 2015, 44, 6981.  doi: 10.1039/C5CS00246J

    7. [7]

      Zhao, Z. J.; Lu, P.; Lam, J. W. Y.; Wang, Z. M.; Chan, C. Y. K.; Sung, H. H. Y.; Williams, I. D.; Ma, Y. G.; Tang, B. Z. Chem. Sci. 2011, 2, 672.  doi: 10.1039/C0SC00521E

    8. [8]

      McQuade, D. T.; Pullen, E. A.; Swager, T. M. Chem. Rev. 2000, 100, 2537.  doi: 10.1021/cr9801014

    9. [9]

      Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Chem. Rev. 2012, 112, 4687.  doi: 10.1021/cr200263w

    10. [10]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.

    11. [11]

      Guan, W. J.; Zhou, W. J.; Lu, C.; Tang, B. Z. Angew. Chem., Int. Ed. 2015, 54, 15160.  doi: 10.1002/anie.201507236

    12. [12]

      Li, Y. D.; Zhang, H.; Wang, X. C.; Wang, F.; Xia, Y. J. Acta Chim. Sinica 2015, 73, 1055.
       

    13. [13]

      Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74, 351.  doi: 10.6023/A16010001
       

    14. [14]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    15. [15]

      Guan, W. J.; Wang, S.; Lu, C.; Tang, B. Z. Nat. Commun. 2016, 7, 11811.  doi: 10.1038/ncomms11811

    16. [16]

      Chu, Y. H.; Han, H.; Li, W.; Liu, Z. T.; Han, X. E. Chin. J. Org. Chem. 2016, 36, 336.  doi: 10.6023/cjoc201508023

    17. [17]

      Niu, Y. F.; Qian, Y.; Hu, X. D. Chin. J. Org. Chem. 2016, 36, 555.  doi: 10.6023/cjoc201509045

    18. [18]

      Ghosh, K. R.; Saha, S. K.; Gao, J. P.; Wang, Z. Y. Chem. Commun. 2014, 50, 716.  doi: 10.1039/C3CC47934J

    19. [19]

      Zhang, Y. Q.; Li, X. D.; Gao, L. J.; Qiu, J. H.; Heng, L. P.; Tang, B. Z.; Jiang, L. ChemPhysChem 2014, 15, 507.  doi: 10.1002/cphc.v15.3

    20. [20]

      Zhao, N.; Lam, J. W. Y.; Sung, H. H. Y.; Su, H. M.; Williams, I. D.; Wong, K. S.; Tang, B. Z. Chem.-Eur. J. 2014, 20, 133.  doi: 10.1002/chem.201303251

    21. [21]

      Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74, 165.  doi: 10.6023/A15090628
       

    22. [22]

      Li, Y.; Wang, X.; Sun, J. Q. Chem. Soc. Rev. 2012, 41, 5998.  doi: 10.1039/c2cs35107b

    23. [23]

      Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. J. Am. Chem. Soc. 2012, 134, 16662.  doi: 10.1021/ja306199p

    24. [24]

      Yang, W. T.; Guo, W. S.; Zhang, B. B.; Chang, J. Acta Chim. Sinica 2014, 72, 1209.  doi: 10.6023/A14080568
       

    25. [25]

      Tian, R.; Zhang, S. T.; Li, M. W.; Zhou, Y. Q.; Lu, B.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Adv. Funct. Mater. 2015, 25, 5006.  doi: 10.1002/adfm.v25.31

    26. [26]

      Xie, J. P.; Zheng, Y. G.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131, 888.  doi: 10.1021/ja806804u

    27. [27]

      Guan, W. J.; Lu, J.; Zhou, W. J.; Lu, C. Chem. Commun. 2014, 50, 11895.  doi: 10.1039/C4CC06080F

    28. [28]

      Sun, X. C.; Wang, Y.; Lei, Y. Chem. Soc. Rev. 2015, 44, 8019,  doi: 10.1039/C5CS00496A

    29. [29]

      Wang, K.; Liu, Z. L.; Jiang, K. Acta Chim. Sinica 2014, 72, 590.  doi: 10.6023/A14030192
       

    30. [30]

      Makinen, M.; Nousiainen, M.; Sillanpaa, M. Mass Spectrom. Rev. 2011, 30, 940.

    31. [31]

      Capka, L.; Vecera, Z.; Mikuska, P.; Sestak, J.; Kahle, V. J. Chromatogr. A 2015, 1388, 167.  doi: 10.1016/j.chroma.2015.02.041

    32. [32]

      Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. J. Am. Chem. Soc. 2009, 131, 13806.  doi: 10.1021/ja905134d

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(0)
  • Abstract views(2517)
  • HTML views(717)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return