Citation: Bin Xin, Luo Weijian, Yuan Wangzhang, Zhang Yongming. Clustering-Triggered Emission of Poly (N-hydroxysuccinimide Methacrylate)[J]. Acta Chimica Sinica, ;2016, 74(11): 935-941. doi: 10.6023/A16080423 shu

Clustering-Triggered Emission of Poly (N-hydroxysuccinimide Methacrylate)

  • Corresponding author: Yuan Wangzhang, wzhyuan@sjtu.edu.cn Zhang Yongming, ymzsjtu@gmail.com
  • Received Date: 20 August 2016

    Fund Project: National Natural Science Foundation of China 51473092and the Shanghai Rising-Star Program 15QA1402500

Figures(6)

  • Nonconventional luminogens without classic aromatic or conjugated structures are attracting increasing interests owing to their fundamental importance and promising applications in diverse areas. Many of them even exhibit unique aggregation-induced emission (AIE) characteristics. The emission mechanism, however, remains under debate. Previously, we proposed the clustering-triggered emission (CTE) mechanism, namely the clustering of nonconventional chromophores and subsequent electron overlap to rationalize the emission behaviors of such luminogens. To further our understanding, herein, we designed and synthesized poly (N-hydroxysuccinimide methacrylate) (PNHSMA) without any aromatic structures, which was obtained by the radical polymerization of N-hydroxysuccinimide methacrylate (NHSMA) monomer in toluene at 65℃ utilizing azobisisobutyronitrile (AIBN) as initiator. And NHSMA was prepared through the elimination between N-hydroxysuccinimide (NHS) and methacryloyl chloride in the presence of triethylamine (Et3N). It is found that PNHSMA is virtually nonluminescent in dilute solutions (≤0.4 mg·mL-1) even at 77 K, but gets emissive in concentrated solutions (e.g. 40 mg·mL-1) with photoluminescence (PL) maxima at 434 and 485 nm at room temperature. Moreover, its solid powders emit intense blue light with multiple PL peaks upon UV irradiation, indicating its AIE nature and the formation of varying emission species. Further PL measurement of PNHSMA in dimethylformide (DMF) and DMF/acetone (good solvent/nonsolvent) mixtures duly verifies its AIE feature. Meanwhile, NHSMA monomer shows similar emission behaviors to those of PNHSMA, demonstrating concentration enhanced emission and AIE characteristics. In light of above results, it is assumed that NHSMA and its polymeric counterpart PNHSMA may share the similar emission mechanism. Single crystal structure of NHSMA reveals the conjugation of imide group and 3D intermolecular interactions of C=O…C=O (n-π, 3.072 Å), C=O…H-C (2.651, 2.642 Å) and C=O…C-H (3.099 Å). The emission of PNHSMA and NHSMA in concentrated solutions and solid states is thus ascribed to the clustering of imide and ester groups, which results in electronic interactions. The overlap of π and lone pair (n) electrons among C=O, N and O units, together with effective intermolecular interactions in the solid powders extend the conjugation and rigidify the molecular conformations, thus leading to boosted emissions. Such CTE mechanism might be well extended to other nonconventional systems and should be inspiring for the rational design of novel luminogens.
  • 加载中
    1. [1]

      Qiu, F.; Wang, D.; Zhu, Q.; Zhu, L.; Tong, G.; Lu, Y.; Yan, D.; Zhu, X. Biomacromolecules 2014, 15, 1355. (b) Kang, B.; Afifi, M. M.; Austin, L. A.; El-Sayed, M. A. ACS Nano 2013, 7, 7420.

    2. [2]

      Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943. (b) Wang, Q.; Ding, J.; Ma, D.; Cheng, Y.; Wang, L.; Jing, X.; Wang, F. Adv. Funct. Mater. 2009, 19, 84. (c) Zhang, Q.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Adv. Mater. 2004, 16, 432. (d) Yang, J.; Li, L.; Yu, Y.; Ren, Z.; Peng, Q.; Ye, S.; Li, Q.; Li, Z. Mater. Chem. Front. 2017, 1, DOI:10.1039/C6QM00014B.

    3. [3]

      Bai, L.; Li, W.; Chen, J.; Bo, F.; Gao, B.; Liu, H.; Li, J.; Wu, Y.; Ba, X. Macromol. Rapid Commun. 2013, 34, 539. (b) Wu, Y. X.; Li, J. B.; Liang, L. H.; Lu, D. Q.; Zhang, J.; Mao, G. J.; Zhou, L. Y.; Zhang, X. B.; Tan, W.; Shen, G. L.; Yu, R. Q. Chem. Commun. 2014, 50, 2040. (c) Shi, H.; Sun, H.; Yang, H.; Liu, S.; Jenkins, G.; Feng, W.; Li, F.; Zhao, Q.; Liu, B.; Huang, W. Adv. Funct. Mater. 2013, 23, 3268. (d) Chen, M.; Yin, M. Prog. Polym. Sci. 2014, 39, 365.

    4. [4]

      Song, Z.; Hong, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Liu, B.; Tang, B. Z. J. Mater. Chem. B 2014, 2, 1717. (b) Zhang, W.; Xu, L.; Qin, J.; Yang, C. Macromol. Rapid Commun. 2013, 34, 442. (c) Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. J. Mater. Chem. 2010, 20, 185.

    5. [5]

      Zhao, Y. S.; Xu, J.; Peng, A.; Fu, H.; Ma, Y.; Jiang, L.; Yao, J. Angew. Chem. 2008, 120, 7411. (b) Gu, X.; Yao, J.; Zhang, G.; Yan, Y.; Zhang, C.; Peng, Q.; Liao, Q.; Wu, Y.; Xu, Z.; Zhao, Y.; Fu, H.; Zhang, D. Adv. Funct. Mater. 2012, 22, 4862.

    6. [6]

      Wang, K.; Zhang, H.; Chen, S.; Yang, G.; Zhang, J.; Tian, W.; Su, Z.; Wang, Y. Adv. Mater. 2014, 26, 6168. (b) Liu, D.; Duan, Y.-H. Chin. Chem. Lett. 2013, 24, 809. (c) Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W. Y.; Wang, Z.; Liu, Y.; Kwok, H. S.; Ma, Y.; Tang, B. Z. Adv. Mater. 2010, 22, 2159. (d) Yuan, W. Z.; Gong, Y.; Chen, S.; Shen, X. Y.; Lam, J. W. Y.; Lu, P.; Lu, Y.; Wang, Z.; Hu, R.; Xie, N.; Kwok, H. S.; Zhang, Y.; Sun, J. Z.; Tang, B. Z. Chem. Mater. 2012, 24, 1518. (e) Ning, Z.; Chen, Z.; Zhang, Q.; Yan, Y.; Qian, S.; Cao, Y.; Tian, H. Adv. Funct. Mater. 2007, 17, 3799. (f) Wang, C.-R.; Gong, Y.-Y.; Yuan, W.-Z.; Zhang, Y.-M. Chin. Chem. Lett. 2016, 27, 1184.

    7. [7]

      Huang, T.; Wang, Z.; Qin, A.; Sun, J. Z.; Tang, B. Z. Acta Chim. Sinica 2013, 71, 979(in Chinese). (黄田, 汪昭旸, 秦安军, 孙景志, 唐本忠, 化学学报, 2013, 71, 979.) (b) Zhu, S.; Song, Y.; Shao, J.; Zhao, X.; Yang, B. Angew. Chem., Int. Ed. 2015, 54, 14626. (c) Pastor-Pérez, L.; Chen, Y.; Shen, Z.; Lahoz, A.; Stiriba, S.-E. Macromol. Rapid Commun. 2007, 28, 1404.

    8. [8]

      Yu, W.; Wu, Y.; Chen, J.; Duan, X. Y.; Jiang, X.-F.; Qiu, X.; Li, Y. RSC Adv. 2016, 6, 51257. (b) Yu, W.; Wang, Z.; Yang, D.; Ouyang, X.; Qiu, X.; Li, Y. RSC Adv. 2016, 6, 47632.

    9. [9]

      Gong, Y. Y.; Tan, Y. Q.; Mei, J.; Zhang, Y. R.; Yuan, W. Z.; Zhang, Y. M.; Sun, J. Z.; Tang, B. Z. Sci. China Chem. 2013, 56, 1178. (b) Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W. Z.; Zhang, Y. Small 2016, 12, DOI:10.1002/smll.201601545.

    10. [10]

      Zhu, S.; Zhang, J.; Wang, L.; Song, Y.; Zhang, G.; Wang, H.; Yang, B. Chem. Commun. 2012, 48, 10889. (b) Niu, S.; Yan, H.; Chen, Z.; Li, S.; Xu, P.; Zhi, X. Polym. Chem. 2016, 7, 3747. (c) Wang, H.-X.; Yang, Z.; Liu, Z.-G.; Wan, J.-Y.; Xiao, J.; Zhang, H.-L. Chem. Eur. J. 2016, 22, 8096. (d) Liu, S. G.; Li, N.; Ling, Y.; Kang, B. H.; Geng, S.; Li, N. B.; Luo, H. Q. Langmuir 2016, 32, 1881.

    11. [11]

      Crosby, G. A.; Demas, J. N. J. Phys. Chem. 1971, 75, 991. (b) Lee, W. I.; Bae, Y.; Bard, A. J. J. Am. Chem. Soc. 2004, 126, 8358. (c) Cao, L.; Yang, W.; Wang, C.; Fu, S. J. Macromol. Sci. Part A. 2007, 44, 417. (d) Yang, W.; Pan, C.-Y. Macromol. Rapid Commun. 2009, 30, 2096. (e) You, Y. Z.; Yu, Z. Q.; Cui, M. M.; Hong, C. Y. Angew. Chem. Int. Ed. 2010, 49, 1099. (f) Wang, D.; Yu, Z.-Q.; Hong, C.-Y.; You, Y.-Z. Eur. Polym. J. 2013, 49, 4189. (g) Yang, L.; Wang, L.; Cui, C.; Lei, J.; Zhang, J. Chem. Commun. 2016, 52, 6154.

    12. [12]

      Lin, Y.; Gao, J.-W.; Liu, H.-W.; Li, Y.-S. Macromolecules 2009, 42, 3237.  doi: 10.1021/ma802353f

    13. [13]

      Wu, D. C.; Liu, Y.; He, C. B.; Goh, S. H. Macromolecules 2005, 38, 9906. (b) Sun, M.; Hong, C.-Y.; Pan, C.-Y. J. Am. Chem. Soc. 2012, 134, 20581.

    14. [14]

      Restani, R. B.; Morgado, P. I.; Ribeiro, M. P.; Correia, I. J.; Aguiar-Ricardo, A.; Bonifácio, V. D. B. Angew. Chem. Int. Ed. 2012, 51, 5162.  doi: 10.1002/anie.201200362

    15. [15]

      Wang, D.; Imae, T. J. Am. Chem. Soc. 2004, 126, 13204.  doi: 10.1021/ja0454992

    16. [16]

      Lin, S. Y.; Wu, T. H.; Jao, Y. C.; Liu, C. P.; Lo, L. W.; Yang, C. S. Chem. Eur. J. 2011, 17, 7158.  doi: 10.1002/chem.201100620

    17. [17]

      Lu, H.; Feng, L.; Li, S.; Zhang, J.; Lu, H.; Feng, S. Macromolecules 2015, 48, 476.  doi: 10.1021/ma502352x

    18. [18]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718. (b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361. (c) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740. (d) Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z. J. Am. Chem. Soc. 2012, 134, 9956. (e) Zhao, Z.; He, B.; Tang, B. Z. Chem. Sci. 2015, 6, 5347.

    19. [19]

      Li, C.; Tang, X.; Zhang, L.; Li, C.; Liu, Z.; Bo, Z.; Dong, Y. Q.; Tian, Y.-H.; Dong, Y.; Tang, B. Z. Adv. Opt. Mater. 2015, 3, 1184. (b) Zhao, Z.; Chen, T.; Jiang, S.; Liu, Z.; Fang, D.; Dong, Y. Q. J. Mater. Chem. C 2016, 4, 4800. (c) Feng, C.; Wang, K.; Xu, Y.; Liu, L.; Zou, B.; Lu, P. Chem. Commun. 2016, 52, 3836. (d) Yue, B.-L.; Xie, Z.-Q.; Lu, P.; Ma, Y.-G. Sci. Sinica Chim. 2013, 43, 1065(in Chinese). (越柏玲, 解增旗, 路萍, 马於光, 中国科学:化学, 2013, 43, 1065.)

    20. [20]

      Xun, Z.-Q.; Tang, H.-Y.; Zeng, Y.; Chen, J.-P.; Yu, T.-J.; Zhang, X.-H.; Li, Y. Acta Chim. Sinica 2015, 73, 819(in Chinese). (寻知庆, 唐海云, 曾毅, 陈金平, 于天君, 张小辉, 李嫕, 化学学报, 2015, 73, 819.) (b) Xia, Z.-Q.; Shao, A.-D.; Li, Q.; Zhu, S.-Q.; Zhu, W.-H. Acta Chim. Sinica 2016, 74, 351(in Chinese). (夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74, 351.) (c) Bian, S.; Ye, J.-H.; Fan, Z.; Zhang, W.-C.; Wang, L.-Y. Chin. J. Org. Chem. 2016, 36, 855(in Chinese). (卞松, 叶家海, 樊政, 张文超, 王乐勇, 有机化学, 2016, 36, 855.)

    21. [21]

      Wang, R. B.; Yuan, W. Z.; Zhu, X. Y. Chin. J. Polym. Sci. 2015, 33, 680.  doi: 10.1007/s10118-015-1635-x

    22. [22]

      Zhao, E.; Lam, J. W. Y.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Tang, B. Z. Macromolecules 2014, 48, 64.
       

    23. [23]

      Miao, X.; Liu, T.; Zhang, C.; Geng, X.; Meng, Y.; Li, X. Phys. Chem. Chem. Phys. 2016, 18, 4295.  doi: 10.1039/C5CP07134H

    24. [24]

      Niu, S.; Yan, H.; Chen, Z.; Yuan, L.; Liu, T.; Liu, C. Macromol. Rapid Commun. 2016, 37, 136.  doi: 10.1002/marc.v37.2

    25. [25]

      Mao, B.-W.; Jia, M.; Zhang, L.; Cao, S.-K. Polym. Bull. 2014, (12), 157(in Chinese).
       

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    3. [3]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    4. [4]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    7. [7]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    8. [8]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    9. [9]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    17. [17]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    18. [18]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    19. [19]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(0)
  • Abstract views(2741)
  • HTML views(504)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return