Citation: Zhou Quanquan, Liu Dan, Xiao Wenjing, Lu Liangqiu. Visible-Light Photoredox Catalytic α-Cyanation Reactions of Tertiary Amines[J]. Acta Chimica Sinica, ;2017, 75(1): 110-114. doi: 10.6023/A16080414 shu

Visible-Light Photoredox Catalytic α-Cyanation Reactions of Tertiary Amines

  • Corresponding author: Lu Liangqiu, luliangqiu@mail.ccnu.edu.cn
  • Received Date: 15 August 2016

    Fund Project: National Natural Science Foundation of China 21232003National Natural Science Foundation of China 21572074National Natural Science Foundation of China 21472057

Figures(5)

  • Visible-light photoredox catalysis, a novel and green catalytic strategy, has recently received increasing attention from chemists and been widely applied to organic synthesis in the past years. This catalytic strategy enables the generation of various reactive species under mild conditions without stoichiometric activation reagents and shows its significance for sustainable chemistry. α-Amino nitriles are highly versatile intermediates having extensive applications in organic synthesis and biological transformation. The oxidation of tertiary amines using stoichiometric oxidants followed by the nucleophilic addition reaction of the iminium intermediate by cyanide ion (CN-) represents a direct approach for their synthesis. However, the use of stoichiometric oxidants and the production of huge amounts of hazardous waste (i.e., CN-) is undesirable from environmental viewpoints. Here, we report a photoredox catalytic α-cyanation reaction of tertiary amines using cyanobenziodoxol as a stable and safe cyanide source. This protocol is favored for mild conditions, the avoidance of extra oxidant and highly toxic cyano anion, good functional tolerance as well as safe and simple operations. By doing so, a variety of α-amino nitriles are afforded in good to excellent yields. A sunlight-driven reaction and a gram-scale reaction further demonstrate the utility of this methodology. In addition, we also succeed to apply the same strategy to the decarboxylative cyanation of carboxylic acids, affording the nitriles in moderate yields. A possible mechanism was proposed on the basis of known literature and our previous reports. The representative procedure for the α-cyanation reaction of tertiary amines is as following:N-phenyl piperidine 1a (0.48 mmol), cyanobenziodoxol 2a (0.40 mmol), photocatalyst Ir[dF (CF3) PPy]2(dtbbpy) PF6 (0.008 mmol) and CsHCO3 (0.60 mmol) were dissolved in DCM (8 mL). Then, the resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times). After that, the solution was stirred at a distance of ca. 5 cm from a 7 W blue LEDs (450~460 nm) at room temperature for 16 h. Upon completion, the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 30:1~10:1) directly to give the desired product. The procedure for the decarboxylative cyanation of carboxylic acids is similar.
  • 加载中
    1. [1]

      (a) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359; (b) Martinez, E. J.; Corey, E. J. Org. Lett. 1999, 1, 75; (c) Dyker, G. Angew. Chem., Int. Ed. 1997, 36, 1700; (d) North, M. Angew. Chem. Int. Ed. 2004, 43, 4126; (e) En, D.; Zou, G.-F.; Guo, Y.; Liao, W.-W. J. Org. Chem. 2014, 79, 4456; (f) Qin, T.-Y.; Zhang, X.-A.; Liao, W.-W. Chin. J. Org. Chem. 2014, 34, 2187. (秦天游, 张晓安, 寮渭巍, 有机化学, 2014, 34, 2187).

    2. [2]

      (a) Ishitani, H.; Komiyama, S.; Kobayashi, S. Angew. Chem., Int. Ed. 1998, 3186; (b) Surendra, K.; Krishnaveni, N. S.; Mahesh, A.; Rao, K. R. J. Org. Chem. 2006, 2532; (c) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.

    3. [3]

      Selected examples, see: (a) Han, W.; Ofial, A. R. Chem. Commun.2009, 33, 5024; (b) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317; (c) Murahashi, S.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312; (d) Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.; Zhu, C. Chem. Commun. 2011, 2354; (e) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835; (f) Lin, A.; Peng, H.; Abdukader, A.; Zhu, C. Eur. J. Org. Chem. 2013, 32, 7286; (g) Inghal, S.; Jain, S. L.; Sain, B. Chem. Commun. 2009, 2371; (h) Sakai, N.; Mutsuro, A.; Ikeda, R.; Konakahara, T. Synlett 2013, 1283; (i) Zhao, P.; Yin, Y.-W. Chin. J. Org. Chem.2004, 24, 916. (赵萍, 尹应武, 有机化学, 2004, 24, 916).

    4. [4]

      For selected reviews on the visible light photocatalysis, see: (a) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40; (b) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687; (c) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828; (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176; (f) Shaw, M. H.; Twilton, J.; MacMillan, D.W. C. J. Org. Chem. 2016, 81, 6898; (g) Karkas, M. D.; Porco, Jr J. A.; Stephenson, C. R. Chem. Rev. 2016, 116, 9683; (h) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.

    5. [5]

      For recent examples on the visible light-induced cyanation reactions, see: (a) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 12709; (b) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94; (c) Franz, J. F.; Kraus, W. B.; Zeitler, K. Chem. Commun. 2015, 51, 8280; (d) Hari, D. P.; Konig, B. Org. Lett. 2011, 13, 3852; (e) Pacheco, O. J. C.; Lipp, A.; Nauth, A. M.; Acke, F.; Dietz, J. P.; Opatz, T. Chem. Eur. J. 2016, 22, 5409.

    6. [6]

      (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299; (b) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, Chichester, 2013; (c) Li, Y.-F.; Hari, D.-P.; Vita, M. V.; Waser, J. Angew. Chem., Int. Ed. 2016, 55, 4436.

    7. [7]

      For recent works on visible light photocatalysis from our group, see: (a) Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653; (b) Xuan, J.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem. Eur. J. 2014, 20, 3045; (c) Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed.2015, 54, 1625; (d) Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 2265; (e) Zeng, T.-T.; Xuan, J.; Ding, W.; Wang, K.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2015, 17, 4070.

    8. [8]

      Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.  doi: 10.1002/anie.201504559

    9. [9]

      For the use of hypervalent iodine CN reagent 2a in organic synthesis, see: (a) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Mismash, B.; Woodward, J. K.; Simonsen, A. J. Tetrahedron Lett. 1995, 36, 7975; (b) Frei, R.; Courant, T.; Wodrich, M. D.; Waser, J. Chem. Eur. J. 2015, 21, 2662. For representative examples of cyanation reaction using 2b~2d as a cyano source, see: (c) Barton, D. H. R.; Jaszberenyl, J. C.; Theodorakis, E. A. Tetrahedron 1992, 48, 2613; (d) Kim, S.; Song, H. J. Synlett 2002, 2110; (e) Kim, S.; Cho, C. H.; Kim, S.; Uenoyama, Y.; Ryu, I. Synlett 2005, 3160; (f) Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4519; (g) Dai, J.-J.; Zhang, W.-W.; Shu, Y.-J.; Sun, Y.-Y.; Xu, J.; Feng, Y.-S.; Xu, H.-J. Chem. Commun. 2016, 52, 6793; (h) Pawar, A. B.; Chang, S. Org. Lett. 2015, 17, 660; (i) Shu, Z.; Ji, W.; Wang, X.; Zhou, Y.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 2186.

    10. [10]

      For a selected review, see: Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.

    11. [11]

      For recent examples, see: (a) Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872; (b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374; (c) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830; (d) Ventre, S.; Petronijevi, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654; (e) Zhou, C.; Li, P.-H.; Zhu, X.-J.; Wang, L. Org. Lett. 2015, 17, 6198; (f) Vaillant, F. L.; Courant, T.; Waser, J. Angew. Chem., Int. Ed. 2015, 54, 11200; (g) Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2015, 137, 11340; (h) Candish, L.; Pitzer, L.; Gomez-Suarez, A.; Glorius, F. Chem. Eur. J. 2016, 22, 4753; (i) Song, H.-T.; Ding, W.; Zhou, Q.-Q.; Liu, J.; Lu, L.-Q.; Xiao, W.-J. J. Org. Chem. 2016, 81, 7250.

    12. [12]

      Liu, W.; Ma, Y.; Yin, Y.; Zhao, Y. Bull. Chem. Soc. Jpn. 2006, 79, 577.  doi: 10.1246/bcsj.79.577

    13. [13]

      Le, C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 11938.  doi: 10.1021/jacs.5b08304

    14. [14]

      (a) Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330; (b) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280; (c) Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun. 2015, 51, 5275.

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(22)
  • Abstract views(1340)
  • HTML views(231)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return