Citation: Rong Jian, Ni Chuanfa, Wang Yunze, Kuang Cuiwen, Gu Yucheng, Hu Jinbo. Radical Fluoroalkylation of Aryl Alkenes with Fluorinated Sulfones by Visible-Light Photoredox Catalysis[J]. Acta Chimica Sinica, ;2017, 75(1): 105-109. doi: 10.6023/A16080412 shu

Radical Fluoroalkylation of Aryl Alkenes with Fluorinated Sulfones by Visible-Light Photoredox Catalysis

  • Corresponding author: Hu Jinbo, jinbohu@sioc.ac.cn
  • Received Date: 14 August 2016

    Fund Project: the National Natural Science Foundation of China 21421002Shanghai Academic Research Leader Program 15XD1504400the Youth Innovation Promotion Association CAS 2014231the National Natural Science Foundation of China 21372246the National Natural Science Foundation of China 21472221973 Program 2015CB931900

Figures(3)

  • The incorporation of fluorine atoms or fluorinated moieties into organic molecules can often lead to significant changes of their physical, chemical, or biological properties. Consequently, fluorinated organic molecules are widely used in areas of pharmaceuticals, agrochemicals and materials. Traditional approaches for the incorporation of fluorinated moieties into organic molecules include nucleophilic, electrophilic, and radical pathways. Among them, radical fluoroalkylations under visible-light photoredox catalysis have attracted much attention because of the mild reaction conditions and broad functional-group tolerance. In our previous work, the radical fluoroalkylation of isocyanides with fluorinated sulfones as the fluoroalkyl radical precursors via Rf-SO2Ar bond cleavage has been achieved under visible-light photoredox catalysis (Rong, J. et al. Angew. Chem., Int. Ed. 2016, 55, 2743). Herein, as a logical extension of our previous research, we report the radical fluoroalkylation of aryl alkenes with fluorinated sulfones as the practical fluoroalkyl radical precursors under visible-light photoredox catalysis. Various fluoroalkyl radicals, including trifluoromethyl (CF3), difluoromethyl (HCF2), 1, 1-difluoroethyl (CH3CF2) and (phenyl) difluoromethyl (PhCF2) radicals, can be incorporated into styrene derivatives via this method, delivering the oxyfluoroalkylation products in 46%~93% yields. Typical procedures for this reaction are given as follows:to a Schlenk tube were added 2-vinylnaphthalene (1a) (0.20 mmol, 30.8 mg, 1.0 equiv.), trifluoromethyl 2-benzo[d]thiazolyl sulfone (2b) (0.24 mmol, 64.1 mg, 1.2 equiv.), fac-Ir (ppy)3 (2.7 mg, 0.004 mmol, 2 mol%), H2O (0.5 mL), and acetone (4.5 mL) sequentially. The resulting mixture was degassed with a freeze-pump-thaw procedure (3 times) and irradiated by a 6 W blue LED for 12 h. After the reaction completed, the mixture was extracted with Et2O and dried over anhydrous MgSO4. The organic solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel by using a 10:1 (V/V) mixture of petroleum ether/EtOAc as an eluent to provide the hydroxytrifluoromethylation product 3a (31.2 mg, 65% yield).
  • 加载中
    1. [1]

      (a) Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, 2006. (b) Chambers, D. R. Fluorine in Organic Chemistry, Blackwell, Oxford, 2004. (c) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd Ed., Wiley-VCH, Weinheim, 2013.

    2. [2]

      (a) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815. (卿凤翎, 有机化学, 2012, 32, 815.) (b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013, 52, 8214. (c) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, DOI: 10.1039/C6CS00351F.

    3. [3]

      For recent reviews, see: (a) Koike, T.; Akita, M. Top. Catal.2014, 57, 967. (b) Belhomme, M.-C.; Besset, T.; Poisson, T.; Pannecoucke, X. Chem. Eur. J. 2015, 21, 12836. (c) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90. (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.) (d) Barata-Vallejo, S.; Bonesi, M. S.; Postigo, A. Org. Biomol. Chem. 2015, 13, 11153. (e) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163. (f) Tan, F.; Xiao, W. Acta Chim. Sinica 2015, 73, 85. (谭芬, 肖文精, 化学学报, 2015, 73, 85.)

    4. [4]

      (a) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O'Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505. (b) Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci. 2013, 4, 3160. (c) Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. ACS Catal. 2014, 4, 2530. (d) Yu, B.; Iqbal, N.; Park, S.; Cho, E. J. Chem. Commun. 2014, 50, 12884. (e) Tang, X.-J.; Zhang, Z.; Dolbier, W. R., Jr. Chem. Eur. J. 2015, 21, 18961. (f) Lin, Q.-Y.; Xu, X.-H; Zhang, K.; Qing, F.-L. Angew. Chem. Int. Ed. 2016, 55, 1479. (g) Panferova, L. I.; Tsymbal, A. V.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2016, 18, 996. (h) Zhu, L.; Wang, L.-S.; Li, B.; Fu, B.; Zhang, C.-P.; Li, W. Chem. Commun. 2016, 52, 6371. (i) Lin, Q.; Chu, L.; Qing, F.-L. Chin. J. Chem. 2013, 31, 885.

    5. [5]

      (a) Xu, P.; Xie, J.; Xue, Q.; Pan, C.; Cheng, Y.; Zhu, C. Chem. Eur. J. 2013, 19, 14039. (b) Carboni, A.; Dagousset, G.; Magnier, E.; Masso, G. Org. Lett. 2014, 16, 1240. (c) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R., Jr. Org. Lett. 2014, 16, 4594. (d) Wang, J.-Y.; Su, Y.-M.; Yin, F.; Bao, Y.; Zhang, X.; Xu, Y.-M.; Wang, X.-S. Chem. Commun. 2014, 50, 4108. (e) Carboni, A.; Dagousset, G.; Magnierb, E.; Masson, G. Chem. Commun. 2014, 50, 14197. (f) Wang, J.-Y.; Zhang, X.; Bao, Y.; Xu, Y.-M.; Cheng, X.-F.; Wang, X.-S. Org. Biomol. Chem. 2014, 12, 5582. (g) Gao, F.; Yang, C.; Gao, G.-L.; Zheng, L.; Xia, W. Org. Lett. 2015, 17, 3478. (h) Thomoson, C. S.; Tang, X.-J.; Dolbier, W. R., Jr. J. Org. Chem. 2015, 80, 1264. (i) Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z.; Ji, B. J. Org. Chem. 2015, 80, 4766. (j) Zheng, L.; Yang, C.; Xu, Z.; Gao, F.; Xia, W. J. Org. Chem. 2015, 80, 5730. (k) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H.; Synthesis2015, 47, 1195. (l) An, Y.; Li, Y.; Wu. J. Org. Chem. Front.2016, 3, 570.

    6. [6]

      (a) 5b. (b) Yasu, Y.; Koike, T.; Akita, M. Org. Lett. 2013, 15, 2136. (c) Zhang, Z.; Tang, X.; Thomoson, C. S.; Dolbier, W. R., Jr. Org. Lett. 2015, 17, 3528. (d) Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464. (e) Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem. Eur. J. 2013, 19, 6209. (f) Yu, X.-L.; Chen, J.-R.; Chen, D.-Z.; Xiao, W.-J. Chem. Commun. 2016, 52, 8275.

    7. [7]

      (a) Yasu, Y.; Koike, T.; Akita, M. Angew. Chem. Int. Ed. 2012, 51, 9567. (b) 6e. (c) Wei, X.-J.; Yang, D.-T.; Wang, L.; Song, T.; Wu, L.-Z.; Liu, Q. Org. Lett. 2013, 15, 6054. (d) Yasu, Y.; Arai, Y.; Tomita, R.; Koike, T.; Akita, M. Org. Lett. 2014, 16, 780. (e) 5b. (f) Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z. Asian J. Org. Chem. 2014, 3, 1273. (g) 6d. (h) Deng, Q.-H.; Chen, J.-R.; Wei, Q.; Zhao, Q.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2015, 51, 3537. (i) Noto, N.; Miyazawa, K.; Koike, T.; Akita, M. Org. Lett. 2015, 17, 3710. (j) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem. Eur. J. 2016, 22, 1262. (k) Ran, Y.; Lin, Q.-Y.; Xu, X.-H; Qing, F.-L. J. Org. Chem. 2016, 81, 7001. (l) Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064.

    8. [8]

      (a) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160. (b) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875. (c) Oh, S. H.; Malpani, Y. R.; Ha, N.; Jung, Y.-S.; Han, S. B. Org. Lett. 2014, 16, 1310. (d) Tang, X.-J.; Dolbier, W. R., Jr. Angew. Chem. Int. Ed. 2015, 54, 4246. (e) Bagal, D. B.; Kachkovskyi, G.; Knorn, M.; Rawner, T.; Bhanage, M. B.; Reiser, O. Angew. Chem. Int. Ed. 2015, 54, 6999. (f) Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Synthesis 2015, 47, 2439. (g) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 2419.

    9. [9]

      (a) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921. (b) Hu, J. J. Fluorine Chem. 2009, 130, 1130. (c) Zhang, W.; Ni, C.; Hu, J. Top. Curr. Chem. 2012, 308, 25. (d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.

    10. [10]

      Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Angew. Chem. Int. Ed. 2016, 55, 2743.  doi: 10.1002/anie.201510533

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(13)
  • Abstract views(1280)
  • HTML views(234)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return