Citation: Rong Jian, Ni Chuanfa, Wang Yunze, Kuang Cuiwen, Gu Yucheng, Hu Jinbo. Radical Fluoroalkylation of Aryl Alkenes with Fluorinated Sulfones by Visible-Light Photoredox Catalysis[J]. Acta Chimica Sinica, ;2017, 75(1): 105-109. doi: 10.6023/A16080412 shu

Radical Fluoroalkylation of Aryl Alkenes with Fluorinated Sulfones by Visible-Light Photoredox Catalysis

  • Corresponding author: Hu Jinbo, jinbohu@sioc.ac.cn
  • Received Date: 14 August 2016

    Fund Project: the National Natural Science Foundation of China 21421002Shanghai Academic Research Leader Program 15XD1504400the Youth Innovation Promotion Association CAS 2014231the National Natural Science Foundation of China 21372246the National Natural Science Foundation of China 21472221973 Program 2015CB931900

Figures(3)

  • The incorporation of fluorine atoms or fluorinated moieties into organic molecules can often lead to significant changes of their physical, chemical, or biological properties. Consequently, fluorinated organic molecules are widely used in areas of pharmaceuticals, agrochemicals and materials. Traditional approaches for the incorporation of fluorinated moieties into organic molecules include nucleophilic, electrophilic, and radical pathways. Among them, radical fluoroalkylations under visible-light photoredox catalysis have attracted much attention because of the mild reaction conditions and broad functional-group tolerance. In our previous work, the radical fluoroalkylation of isocyanides with fluorinated sulfones as the fluoroalkyl radical precursors via Rf-SO2Ar bond cleavage has been achieved under visible-light photoredox catalysis (Rong, J. et al. Angew. Chem., Int. Ed. 2016, 55, 2743). Herein, as a logical extension of our previous research, we report the radical fluoroalkylation of aryl alkenes with fluorinated sulfones as the practical fluoroalkyl radical precursors under visible-light photoredox catalysis. Various fluoroalkyl radicals, including trifluoromethyl (CF3), difluoromethyl (HCF2), 1, 1-difluoroethyl (CH3CF2) and (phenyl) difluoromethyl (PhCF2) radicals, can be incorporated into styrene derivatives via this method, delivering the oxyfluoroalkylation products in 46%~93% yields. Typical procedures for this reaction are given as follows:to a Schlenk tube were added 2-vinylnaphthalene (1a) (0.20 mmol, 30.8 mg, 1.0 equiv.), trifluoromethyl 2-benzo[d]thiazolyl sulfone (2b) (0.24 mmol, 64.1 mg, 1.2 equiv.), fac-Ir (ppy)3 (2.7 mg, 0.004 mmol, 2 mol%), H2O (0.5 mL), and acetone (4.5 mL) sequentially. The resulting mixture was degassed with a freeze-pump-thaw procedure (3 times) and irradiated by a 6 W blue LED for 12 h. After the reaction completed, the mixture was extracted with Et2O and dried over anhydrous MgSO4. The organic solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel by using a 10:1 (V/V) mixture of petroleum ether/EtOAc as an eluent to provide the hydroxytrifluoromethylation product 3a (31.2 mg, 65% yield).
  • 加载中
    1. [1]

      (a) Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, 2006. (b) Chambers, D. R. Fluorine in Organic Chemistry, Blackwell, Oxford, 2004. (c) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd Ed., Wiley-VCH, Weinheim, 2013.

    2. [2]

      (a) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815. (卿凤翎, 有机化学, 2012, 32, 815.) (b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013, 52, 8214. (c) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, DOI: 10.1039/C6CS00351F.

    3. [3]

      For recent reviews, see: (a) Koike, T.; Akita, M. Top. Catal.2014, 57, 967. (b) Belhomme, M.-C.; Besset, T.; Poisson, T.; Pannecoucke, X. Chem. Eur. J. 2015, 21, 12836. (c) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90. (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.) (d) Barata-Vallejo, S.; Bonesi, M. S.; Postigo, A. Org. Biomol. Chem. 2015, 13, 11153. (e) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163. (f) Tan, F.; Xiao, W. Acta Chim. Sinica 2015, 73, 85. (谭芬, 肖文精, 化学学报, 2015, 73, 85.)

    4. [4]

      (a) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O'Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505. (b) Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci. 2013, 4, 3160. (c) Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. ACS Catal. 2014, 4, 2530. (d) Yu, B.; Iqbal, N.; Park, S.; Cho, E. J. Chem. Commun. 2014, 50, 12884. (e) Tang, X.-J.; Zhang, Z.; Dolbier, W. R., Jr. Chem. Eur. J. 2015, 21, 18961. (f) Lin, Q.-Y.; Xu, X.-H; Zhang, K.; Qing, F.-L. Angew. Chem. Int. Ed. 2016, 55, 1479. (g) Panferova, L. I.; Tsymbal, A. V.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2016, 18, 996. (h) Zhu, L.; Wang, L.-S.; Li, B.; Fu, B.; Zhang, C.-P.; Li, W. Chem. Commun. 2016, 52, 6371. (i) Lin, Q.; Chu, L.; Qing, F.-L. Chin. J. Chem. 2013, 31, 885.

    5. [5]

      (a) Xu, P.; Xie, J.; Xue, Q.; Pan, C.; Cheng, Y.; Zhu, C. Chem. Eur. J. 2013, 19, 14039. (b) Carboni, A.; Dagousset, G.; Magnier, E.; Masso, G. Org. Lett. 2014, 16, 1240. (c) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R., Jr. Org. Lett. 2014, 16, 4594. (d) Wang, J.-Y.; Su, Y.-M.; Yin, F.; Bao, Y.; Zhang, X.; Xu, Y.-M.; Wang, X.-S. Chem. Commun. 2014, 50, 4108. (e) Carboni, A.; Dagousset, G.; Magnierb, E.; Masson, G. Chem. Commun. 2014, 50, 14197. (f) Wang, J.-Y.; Zhang, X.; Bao, Y.; Xu, Y.-M.; Cheng, X.-F.; Wang, X.-S. Org. Biomol. Chem. 2014, 12, 5582. (g) Gao, F.; Yang, C.; Gao, G.-L.; Zheng, L.; Xia, W. Org. Lett. 2015, 17, 3478. (h) Thomoson, C. S.; Tang, X.-J.; Dolbier, W. R., Jr. J. Org. Chem. 2015, 80, 1264. (i) Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z.; Ji, B. J. Org. Chem. 2015, 80, 4766. (j) Zheng, L.; Yang, C.; Xu, Z.; Gao, F.; Xia, W. J. Org. Chem. 2015, 80, 5730. (k) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H.; Synthesis2015, 47, 1195. (l) An, Y.; Li, Y.; Wu. J. Org. Chem. Front.2016, 3, 570.

    6. [6]

      (a) 5b. (b) Yasu, Y.; Koike, T.; Akita, M. Org. Lett. 2013, 15, 2136. (c) Zhang, Z.; Tang, X.; Thomoson, C. S.; Dolbier, W. R., Jr. Org. Lett. 2015, 17, 3528. (d) Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464. (e) Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem. Eur. J. 2013, 19, 6209. (f) Yu, X.-L.; Chen, J.-R.; Chen, D.-Z.; Xiao, W.-J. Chem. Commun. 2016, 52, 8275.

    7. [7]

      (a) Yasu, Y.; Koike, T.; Akita, M. Angew. Chem. Int. Ed. 2012, 51, 9567. (b) 6e. (c) Wei, X.-J.; Yang, D.-T.; Wang, L.; Song, T.; Wu, L.-Z.; Liu, Q. Org. Lett. 2013, 15, 6054. (d) Yasu, Y.; Arai, Y.; Tomita, R.; Koike, T.; Akita, M. Org. Lett. 2014, 16, 780. (e) 5b. (f) Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z. Asian J. Org. Chem. 2014, 3, 1273. (g) 6d. (h) Deng, Q.-H.; Chen, J.-R.; Wei, Q.; Zhao, Q.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2015, 51, 3537. (i) Noto, N.; Miyazawa, K.; Koike, T.; Akita, M. Org. Lett. 2015, 17, 3710. (j) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem. Eur. J. 2016, 22, 1262. (k) Ran, Y.; Lin, Q.-Y.; Xu, X.-H; Qing, F.-L. J. Org. Chem. 2016, 81, 7001. (l) Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064.

    8. [8]

      (a) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160. (b) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875. (c) Oh, S. H.; Malpani, Y. R.; Ha, N.; Jung, Y.-S.; Han, S. B. Org. Lett. 2014, 16, 1310. (d) Tang, X.-J.; Dolbier, W. R., Jr. Angew. Chem. Int. Ed. 2015, 54, 4246. (e) Bagal, D. B.; Kachkovskyi, G.; Knorn, M.; Rawner, T.; Bhanage, M. B.; Reiser, O. Angew. Chem. Int. Ed. 2015, 54, 6999. (f) Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Synthesis 2015, 47, 2439. (g) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 2419.

    9. [9]

      (a) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921. (b) Hu, J. J. Fluorine Chem. 2009, 130, 1130. (c) Zhang, W.; Ni, C.; Hu, J. Top. Curr. Chem. 2012, 308, 25. (d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.

    10. [10]

      Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Angew. Chem. Int. Ed. 2016, 55, 2743.  doi: 10.1002/anie.201510533

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    10. [10]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    11. [11]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    12. [12]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    13. [13]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    19. [19]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    20. [20]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

Metrics
  • PDF Downloads(14)
  • Abstract views(1312)
  • HTML views(237)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return