Citation: Bai Wei, Shi Yang, Song Chen, He Jie, Qin Anjun, Sun Jing Zhi, Tang Ben Zhong. Fluoranthene-Modified Tetraphenylethene Derivatives: Synthesis, Aggregation-Enhanced Emission Characteristic and Their Highly Sensitive Detection of Picric Acid[J]. Acta Chimica Sinica, ;2016, 74(11): 893-901. doi: 10.6023/A16080410 shu

Fluoranthene-Modified Tetraphenylethene Derivatives: Synthesis, Aggregation-Enhanced Emission Characteristic and Their Highly Sensitive Detection of Picric Acid

  • Corresponding author: Sun Jing Zhi, sunjz@zju.edu.cn Tang Ben Zhong, tangbenz@ust.hk
  • Received Date: 14 August 2016

    Fund Project: National Natural Science Foundation of China 51273175and National Basic Research Program of China 973 Programand National Basic Research Program of China 2012CB834704

Figures(6)

  • Aggregation-induced emission (AIE) active compounds and materials have become one of the hottest research topics worldwide, due to their unprecedented merits such as ultra-high fluorescence quantum efficiencies as aggregates or in solid state. Up to now, it is still extremely crucial and fundamental to expand the AIE-genic molecular systems for this research area. Here, we prepared two fluoranthene-modified tetraphenylethene (TPE) derivatives, TPE-FA and TPE-DFA, through the Suzuki-Miyaura coupling between boronate-bearing TPE and bromo-bearing fluoranthene under mild reaction condition. The conjugation between fluoranthene and TPE moieties assures that the as-prepared TPE-FA and TPE-DFA both possess aggrega-tion-enhanced emission (AEE) characteristics. The emission maximum of TPE-FA and TPE-DFA as aggregates in THF/water mixtures is at 477 nm and 494 nm, and the absolute quantum yields of the two compounds in solid films are as high as 74.1% and 40.4%, respectively. They can be utilized as fluorescent probes for picric acid with high sensitivity. Their quenching coef-ficients can be as high as 4×104 L·mol-1, while their detection limits can be lower than 1 μg·g-1. These AEE-active molecules are promising to act as fluorescent probes in the detection of other nitro-substituted electron-deficient molecules.
  • 加载中
    1. [1]

      Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993; (b) Bao, Y.; Wang, T.; Li, Q.; Du, F.; Bai, R.; Smet, M.; Dehaen, W. Polym. Chem. 2014, 5, 792; (c) Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Chem. Soc. Rev. 2013, 42, 622; (d) Dias, F. B.; Bourdakos, K. N.; Jankus, V.; Moss, K. C.; Kamtekar, K. T.; Bhalla, V.; Santos, J.; Bryce, M. R.; Monkman, A. P. Adv. Mater. 2013, 25, 3707; (e) Li, W.; Pan, Y.; Xiao, R.; Peng, Q.; Zhang, S.; Ma, D.; Li, F.; Shen, F.; Wang, Y.; Yang, B.; Ma, Y. Adv. Funct. Mater. 2014, 24, 1609; (f) Zhang, Q.; Tsang, D.; Kuwabara, H.; Hatae, Y.; Li, B.; Takahashi, T.; Lee, S. Y.; Yasuda, T.; Adachi, C. Adv. Mater. 2015, 27, 2096.

    2. [2]

      Birks, J. B. Photophysics of Aromatic Molecules, Wiley, London, 1970.
       

    3. [3]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 37, 1740; (b) Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Adv. Mater. 2014, 26, 5429; (c) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718; (d) Wang, H.; Zhao, E.; Lam, J. W. Y.; Tang, B. Z. Mater. Today 2015, 18, 365.

    4. [4]

      Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. J. Mater. Chem. 2010, 20, 1858; (b) Liang, J.; Tang, B. Z.; Liu, B. Chem. Soc. Rev. 2015, 44, 2798; (c) Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Nanoscale 2015, 7, 11486; (d) Dong, Y. Q.; Lam, J. W. Y.; Tang, B. Z. J. Phys. Chem. Lett. 2015, 6, 3429; (e) Yang, J.; Huang, J.; Li, Q.; Li, Z. J. Mater. Chem. C 2016, 4, 2663.

    5. [5]

      Tseng, N.-W.; Liu, J.; Ng, J. C. Y.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Chem. Sci. 2012, 3, 493; (b) Liang, G.; Lam, J. W. Y.; Qin, W.; Li, J.; Xie, N.; Tang, B. Z. Chem. Commun. 2014, 50, 1725; (c) Parrot, E. P. J.; Tan, N. Y.; Hu, R.; Zeitler, J. A.; Tang, B. Z.; Pickwell-MacPherson, E. Mater. Horiz. 2014, 1, 251; (d) Yuan, H.; Wang, K.; Yang, K.; Liu, B.; Zou, B. J. Phys. Chem. Lett. 2014, 5, 2968; (e) Sun, G.; Zhao, Y.; Liang, W. J. Chem. Theory Comput. 2015, 11, 2257.

    6. [6]

      Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. J. Mater. Chem. 2012, 22, 23726; (b) Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z. J. Am. Chem. Soc. 2012, 134, 9956; (c) Bai, W.; Wang, Z.; Tong, J.; Mei, J.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Commun. 2015, 51, 1089; (d) Chen, S.; Hong, Y.; Zeng, Y.; Sun, Q.; Liu, Y.; Zhao, E.; Bai, G.; Qu, J.; Hao, J.; Tang, B. Z. Chem. Eur. J. 2015, 21, 4315; (e) Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3, 220.

    7. [7]

      He, J.; Xu, B.; Chen, F.; Xia, H.; Li, K.; Ye, L.; Tian, W. J. Phys. Chem. C 2009, 113, 9892; (b) Lu, H.; Xu, B.; Dong, Y.; Chen, F.; Li, Y.; Li, Z.; He, J.; Li, H.; Tian, W. Langmuir 2010, 26, 6838; (c) Chen, J. L.; Ma, S. Q.; Xu, B.; Zhang, J. B.; Dong, Y. J.; Tian, W. J. Chin. Sci. Bull. 2013, 58, 2747.

    8. [8]

      Chen, M.; Li, L.; Nie, H.; Tong, J.; Yan, L.; Xu, B.; Sun, J. Z.; Tian, W.; Zhao, Z.; Qin, A.; Tang, B. Z. Chem. Sci. 2015, 6, 1932; (b) Chen, M.; Li, L.; Nie, H.; Shi, Y.; Mei, J.; Wang, J.; Sun, J. Z.; Qin, A.; Tang, B. Z. Chem. Commun. 2015, 51, 10710; (c) Pan, L. X.; Luo, W. W.; Chen, M.; Liu, J. K.; Xu, L.; Hu, R. R.; Zhao, Z. J.; Qin, A. J.; Tang, B. Z. Chin. J. Org. Chem. 2016, 36, 1316(in Chinese). (潘凌翔, 罗文文, 陈明, 刘峻恺, 徐露, 胡蓉蓉, 赵祖金, 秦安军, 唐本忠, 有机化学, 2016, 36, 1316.)

    9. [9]

      Hu, R.; Lam, J. W. Y.; Liu, Y.; Zhang, X.; Tang, B. Z. Chem. Eur. J. 2013, 19, 5617; (b) Li, L.; Chen, M.; Zhang, H.; Nie, H.; Sun, J. Z.; Qin, A.; Tang, B. Z. Chem. Commun. 2015, 51, 4830; (c) Xun, Z. Q.; Tang, H. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Zhang, X. H.; Li, Y. Acta Chim. Sinica 2015, 73, 819(in Chinese). (寻知庆, 唐海云, 曾毅, 陈金平, 于天君, 张小辉, 李嫕, 化学学报, 2015, 73, 819.)

    10. [10]

      Wang, Z.; Bai, W.; Tong, J.; Wang, Y. J.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Commun. 2016, 52, 10365.  doi: 10.1039/C6CC02851A

    11. [11]

      Yang, J.; Li, L.; Yu, Y.; Ren, Z.; Peng, Q.; Ye, S.; Li, Q.; Li, Z. Mater. Chem. Front. 2017, DOI:10.1039/c6qm00014b.  doi: 10.1039/c6qm00014b

    12. [12]

      Song, Z.; Zhang, W.; Jiang, M.; Sung, H. H. Y.; Kwok, R. T. K.; Nie, H.; Williams, I. D.; Liu, B.; Tang, B. Z. Adv. Funct. Mater. 2016, 26, 824; (b) Zhao, Z.; Chen, S.; Chan, C. Y. K.; Lam, J. W. Y.; Jim, C. K. W.; Lu, P.; Chang, Z.; Kwok, H. S.; Qiu, H.; Tang, B. Z. Chem. Asian J. 2012, 7, 484; (c) Tong, J.; Wang, Y.; Mei, J.; Wang, J.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Eur. J. 2014, 20, 4661; (d) Wang, Y. J.; Shi, Y.; Wang, Z.; Zhu, Z.; Zhao, X.; Nie, H.; Qian, J.; Qin, A.; Sun, J. Z.; Tang, B. Z. Chem. Eur. J. 2016, 22, 9784.

    13. [13]

      Shao, A.; Xie, Y.; Zhu S.; Guo, Z.; Zhu, S.; Guo, J.; Shi, P.; James, T. D.; Tian, H.; Zhu, W.-H. Angew. Chem., Int. Ed. 2015, 54, 7275; (b) Guo, Z.; Shao, A.; Zhu, W.-H. J. Mater. Chem. C 2016, 4, 2640; (c) Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74, 351(in Chinese). (夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74, 351.)

    14. [14]

      Ding, L.; Ying, H.-Z.; Zhou, Y.; Lei, T.; Pei, J. Org. Lett. 2010, 12, 5522; (b) Zhou, Y.; Ding, L.; Shi, K.; Dai, Y.-Z.; Ai, N.; Wang, J.; Pei, J. Adv. Mater. 2012, 24, 957; (c) Zheng, Y.-Q.; Dai, Y.-Z.; Zhou, Y.; Wang, J.-Y.; Pei, J. Chem. Commun. 2014, 50, 1591; (d) Saranya, G.; Kolandaivel, P.; Senthilkumar, K. J. Phys. Chem. A 2011, 115, 14647; (e) Goel, A.; Kumar, V.; Chaurasia, S.; Rawat, M.; Prasad, R.; Anand, R. S. J. Org. Chem. 2010, 75, 3656; (f) Goel, A.; Sharma, A.; Kathuria, M.; Bhattacharjee, A.; Verma, A.; Mishra, P. R.; Nazir, A.; Mitra, K. Org. Lett. 2014, 16, 756; (g) Han, L.; Zhang, Y.; Chen, W.; Cheng, X.; Ye, K.; Zhang, J.; Wang, Y. Chem. Commun. 2015, 51, 4477.

    15. [15]

      Li, X.-G.; Liao, Y.; Huang, M.-R.; Strong, V.; Kaner, R. B. Chem. Sci. 2013, 4, 1970.  doi: 10.1039/c3sc22107e

    16. [16]

      Venkatramaiah, N.; Kumar, S.; Patil, S. Chem. Eur. J. 2012, 18, 14745; (b) Kumar, S.; Venkatramaiah, N.; Patil, S. J. Phys. Chem. C 2013, 117, 7236.

    17. [17]

      Chandrasekaran, Y.; Venkatramaiah, N.; Patil, S. Chem. Eur. J. 2016, 22, 5288.  doi: 10.1002/chem.201504485

    18. [18]

      Feng, H.-T.; Zheng, Y.-S. Chem. Eur. J. 2014, 20, 195; (b) Wang, X.; Bian, J.; Xu, L.; Wang, H.; Feng, S. Phys. Chem. Chem. Phys. 2015, 17, 32472.

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    4. [4]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    12. [12]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    13. [13]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

    14. [14]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    15. [15]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    16. [16]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    17. [17]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    18. [18]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(0)
  • Abstract views(746)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return