Citation: Peng Zhe, Ji Yingchun, Wang Zhi, Tong Bin, Shi Jianbing, Dong Yuping. Properties of Polymorphism and Acid Response of Pyrrolopyrrole-based Derivative with Aggregation-induced Emission Behavior[J]. Acta Chimica Sinica, ;2016, 74(11): 942-948. doi: 10.6023/A16080406 shu

Properties of Polymorphism and Acid Response of Pyrrolopyrrole-based Derivative with Aggregation-induced Emission Behavior

  • Corresponding author: Tong Bin, tongbin@bit.edu.cn Dong Yuping, chdongyp@bit.edu.cn
  • Received Date: 13 August 2016

    Fund Project: National Natural Science Foundation of China 51328302National Natural Science Foundation of China 21474009National Basic Research Program of China 973 Program: 2013CB834704

Figures(8)

  • A new A-D-A type pyrrolopyrrole-based derivative 4', 4"-(2, 5-diphenyl-pyrrolo[3, 2-b]pyrrole-1, 4-diyl) bis ([1, 1'-biphenyl]-4-carbonitrile) (DPPDC) was synthesized via Suzuki coupling reaction between 1, 4-bis (4-bromophenyl)-2, 5-diphenyl-1, 4-dihydropyrrolo[3, 2-b]pyrrole and 4-cyanophenylboronic acid. The fluorescent emission intensities of DPPDC in pure THF solution and lower fraction of water (φH2O≤60%) mixtures were weak at around 550 nm. When φH2O was 99% in THF/H2O mixtures, the emission was enhanced and blue-shifted at around 505 nm. The maximal fluorescent emission intensity of DPPDC was 11 times higher than that of in pure THF solution, indicating DPPDC exhibiting AIE property. It was also found that four different kinds of crystal structures of DPPDC was cultivated from CHCl2-Hexane, CHCl3-Hexane and CHCl3/Acetone-Hexane systems via solvent slow diffusion method. Four crystals respec-tively emitted blue, azure, green and turquoise at 467, 483, 496 and 493 nm, which manifested the polymorphism-dependent fluorescent emission property of DPPDC. Additionally, trifluoroacetic acid (TFA) could make the emitting color change from yellow to orange-red with as-prepared paper containing DPPDC due to the acid-base interaction. The obvious emitting color change of DPPDC can be used as a visual sensor to detect acid gas.
  • 加载中
    1. [1]

      Kim, S.; Kim, B.; Lee, J.; Shin, H.; Park, Y.; Park, J. Mat. Sci. Eng. R 2016, 99, 1; (b)) Zhao, Z.; Li, Z.; Lam, J. W. Y.; Maldonado, J. L.; Ramos-Ortiz, G.; Liu, Y.; Yuan, W.; Xu, J.; Miao, Q.; Tang, B. Z. Chem. Commun. 2011, 47, 6924; (c) Fujisawa, K.; Okuda, Y.; Izumi, Y.; Nagamatsu, A.; Rokusha, Y.; Sadaike, Y.; Tsutsumi, O. J. Mater. Chem. C 2014, 2, 3549; (d) Zhao, N.; Zhang, C.; Lam, J. W. Y.; Zhao, Y. S.; Tang, B. Z. Asian J. Org. Chem. 2014, 3, 118; (e) Mukherjee, S.; Thilagar, P. J. Mater. Chem. C 2016, 4, 2647; (f) Pan, L. X.; Luo, W. W.; Chen, M.; Liu, J. K.; Xu, L.; Hu, R. R.; Zhao, Z. J.; Qin, A. J.; Tang, B. Z. Chin. J. Org. Chem. 2016, 36, 1316. (潘凌翔, 罗文文, 陈明, 刘峻恺, 徐露, 胡蓉蓉, 赵祖金, 秦安军, 唐本忠, 有机化学, 2016, 36, 1316.)

    2. [2]

      Wang, K.; Zhang, H. Y.; Chen, S. Y.; Yang, G. C.; Zhang, J. B.; Tian, W. J.; Su, Z. M.; Wang, Y. Adv. Mater. 2014, 26, 6168.  doi: 10.1002/adma.201401114

    3. [3]

      Dong, Y. J.; Xu, B.; Zhang, J. B.; Tan, X.; Wang, L. J.; Chen, J. L.; Lv, H. G.; Wen, S. P.; Li, B.; Ye, L.; Zou, B.; Tian, W. J. Angew. Chem. Int. Ed. 2012, 51, 10782.  doi: 10.1002/anie.v51.43

    4. [4]

      Yoon, S. J.; Chung, J. W.; Gierschner, J.; Kim, K. S.; Choi, M. G.; Kim, D.; Park, S. Y. J. Am. Chem. Soc. 2010, 132, 13675.  doi: 10.1021/ja1044665

    5. [5]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.

    6. [6]

      Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J.; Liu, R.; Liu, J.; Zhang, X.; Liu, H.; Liu, B. Sci. Rep. 2013, 3, 1150; (b) Wang, D.; Qian, J.; Qin, W.; Qin, A.; Tang, B. Z.; He, S. Sci. Rep. 2014, 4, 4279; (c) Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74, 165. (孙静波, 张恭贺, 贾小宇, 薛鹏冲, 贾俊辉, 卢然, 化学学报, 2016, 74, 165.); (d) Wang, C.; Zhang, H.; Tian, L.; Zhu, W.; Lan, Y.; Li, J.; Wang, H.; Zhang, G. X.; Zhang, D. Q.; Yuan, S. L.; Li, G. T. Sci. China Chem. 2016, 59, 89; (e) Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. Curr. Org. Chem. 2010, 14, 2109; (f) Gu, X. G.; Yao, J. J.; Zhang, G. X.; Zhang, C.; Yan, Y. L.; Zhao, Y. S.; Zhang, D. Q. Chem.-Asian J. 2013, 8, 2362; (g) Li, Z. Z.; Huo, Y. P.; Yang, X. H.; Ji, S. M. Chin. J. Org. Chem. 2016, 36, 2317. (李宗植, 霍延平, 阳香华, 籍少敏, 有机化学, 2016, 36, 2317.)

    7. [7]

      Mei, J.; Hong, Y. N.; Lam, J. W. Y.; Qin, A. J.; Tang, Y. H.; Tang, B. Z. Adv. Mater. 2014, 26, 5429.  doi: 10.1002/adma.201401356

    8. [8]

      He, Z. K.; Zhang, L. Q.; Mei, J.; Zhang, T.; Lam, J. W.Y.; Shuai, Z. G.; Dong, Y. Q.; Tang, B. Z. Chem. Mater. 2015, 27, 6601.  doi: 10.1021/acs.chemmater.5b02280

    9. [9]

      Xu, Y. X.; Wang, K.; Zhang, Y. J.; Xie, Z. Q.; Zou, B.; Ma, Y. G. J. Mater. Chem. C 2016, 4, 1257.  doi: 10.1039/C5TC03745J

    10. [10]

      Zhang, Z. Y.; Song, X. X.; Wang, S. P.; Li, F.; Zhang, H. Y.; Ye, K. Q.; Wang, Y. J. Phys. Chem. Lett. 2016, 7, 1697.  doi: 10.1021/acs.jpclett.6b00704

    11. [11]

      Krzeszewski, M.; Thorsted, B.; Brewer, J.; Gryko, D. T. J. Org. Chem. 2014, 79, 3119.  doi: 10.1021/jo5002643

    12. [12]

      Hisaki, I.; Sakamoto, Y.; Shigemitsu, H.; Tohnai, N.; Miyata, M. Cryst. Growth Des. 2009, 9, 414.  doi: 10.1021/cg800643e

    13. [13]

      Janiga, A.; Glodkowska-Mrowka, E.; Stoklosa, T.; Gryko, D. T. Asian J. Org. Chem. 2013, 2, 411.  doi: 10.1002/ajoc.v2.5

    14. [14]

      Peng, Z.; Feng, X.; Tong, B.; Chen, D. D.; Shi, J. B.; Zhi, J. G.; Dong, Y. P. Sensor Actuat. B 2016, 232, 264.  doi: 10.1016/j.snb.2016.03.136

    15. [15]

      Zhu, X. L.; Huang, H.; Liu, R.; Jin, X. D.; Li, Y. H.; Wang, D. F.; Wang, Q.; Zhu, H. J. J. Mater. Chem. C 2015, 3, 3774.  doi: 10.1039/C4TC02955K

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    11. [11]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(0)
  • Abstract views(824)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return