Citation: Cui Bin-Bin, Tang Jian-Hong, Zhong Yu-Wu. Resistive Memory Materials Based on Transition-Metal Complexes[J]. Acta Chimica Sinica, ;2016, 74(9): 726-733. doi: 10.6023/A16080384 shu

Resistive Memory Materials Based on Transition-Metal Complexes

  • Corresponding author: Zhong Yu-Wu, zhongyuwu@iccas.ac.cn
  • Received Date: 2 August 2016

    Fund Project: the National Natural Science Foundation of China 21501183the Ministry of Science and Technology of China 2012YQ120060the National Natural Science Foundation of China 21472196the Strategic Priority Research Program of the Chinese Academy of Sciences XDB 12010400the National Natural Science Foundation of China 21521062the National Natural Science Foundation of China 21271176

Figures(14)

  • A resistive memory operates as an electrical switch between high and low conductivity states (or multistates) in response to an external electric field. Due to the high capacity, high flexibility, good scalability, low cost, and low power consumption, resistive memory is promising for the next-generation high-density data storage. In addition to inorganic metal oxides, carbon nanomaterials, organic small molecular and polymeric semiconductor materials, transition-metal complexes have recently received much attention as active materials for resistive memory. In this contribution, the applications of transition-metal complexes in resistive memory reported to date are summarized and discussed, mainly including group VⅢ [Fe(Ⅱ), Ru(Ⅱ), Co(Ⅲ), Rh(Ⅲ), Ir(Ⅲ), and Pt(Ⅱ) complexes], group IB and ⅡB [Cu(Ⅱ), Au(Ⅲ), and Zn(Ⅱ) complexes], and lanthanide complexes [mainly Eu(Ⅲ) complexes]. The memory behavior and mechanism of these materials will be discussed. Transition-metal complexes often possess well-defined and reversible redox processes. The frontier energy levels and gaps can be easily modulated by changing the structures of ligands and metal species, which is beneficial for generating electrical bistates or multistates when they are used in resistive memory devices. These features make transition-metal complexes potentially useful as memory materials in practical applications.
  • 加载中
    1. [1]

      Chua L. O. IEEE Trans. Circuit Theory, 1971, 18:507.  doi: 10.1109/TCT.1971.1083337

    2. [2]

      Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. Nature, 2008, 453:80. (b) Ouyang J., Chu C.-W., Szmanda C. R., Ma L., Yang Y. Nat. Mater., 2004, 3:918. (c) Moller S., Perlov C., Jackson W., Taussig C., Forrest S. R. Nature, 2003, 426:166. (d) Waser R., Aono M. Nat. Mater., 2007, 6:833.

    3. [3]

      Ling Q. D., Liaw D. J., Zhu C., Chan D. S. H., Kang E. T., Neoh K. G. Prog. Polym. Sci., 2008, 33:917. (b) Chen Y., Liu G., Wang C., Zhang W., Li R.-W., Wang L. Mater. Horiz., 2014, 1:489. (c) Liu C.-L., Chen W.-C. Polym. Chem., 2011, 2:2169.

    4. [4]

      Lin W.-P., Liu S.-J., Gong T., Zhao Q., Huang W. Adv. Mater., 2014, 26:570.  doi: 10.1002/adma.v26.4

    5. [5]

      Zhu X., Su W., Liu Y., Hu B., Pan L., Lu W., Zhang J., Li R.-W. Adv. Mater., 2012, 24:3941. (b) Liang L., Li K., Xiao C., Fan S., Liu J., Zhang W., Xu W., Tong W., Liao J., Zhou Y., Ye B., Xie Y. J. Am. Chem. Soc., 2015, 137:3102.

    6. [6]

      Wang X., Xie W., Xu J.-B. Adv. Mater., 2014, 26:5496.  doi: 10.1002/adma.201306041

    7. [7]

      Ma Y., Cao X., Li G., Wen Y., Yang Y., Wang J., Song Y. Adv. Funct. Mater., 2010, 20:803. (b) Li G., Zheng K., Wang C., Leck K. S., Hu F., Sun X. W., Zhang Q. ACS Appl. Mater. Interfaces, 2013, 5:6458. (c) Wu H.-C., Zhang J., Bo Z., Chen W.-C. Chem. Commun., 2015, 51:14179. (d) Su Z., Zhuang H., Liu H., Li H., Xu Q., Lu J., Wang L. J. Mater. Chem. C, 2014, 2:5673.

    8. [8]

      Ko Y.-G., Kim D. M., Kim K., Jung S., Wi D., Michinobu T., Ree M. ACS Appl. Mater. Interfaces, 2014, 6:8415. (b) Wu X., Wu Y., Zhang C., Niu H., Lei L., Qin C., Wang C., Bai X., Wang W. RSC Adv., 2015, 5:58843. (c) Lin L.-C., Ye H.-J., Chen C.-J., Tsai C.-L., Liou G.-S. Chem. Commun., 2014, 50:13917. (d) Zhou Z., Qu L., Yang T., Wen J., Zhang Y., Chi Z., Liu S., Chen X., Xu J. RSC Adv., 2016, 6:52798.

    9. [9]

      Li H., Xu Q., Li N., Sun R., Ge J., Lu J., Gu H., Yan F. J. Am. Chem. Soc., 2010, 132:5542. (b) Gu P.-Y., Zhou F., Gao J., Li G., Wang C., Xu Q.-F., Zhang Q., Lu J.-M. J. Am. Chem. Soc., 2013, 135:14086. (c) Gu Q.-F., He J.-H., Chen D.-Y., Dong H.-L., Li Y.-Y., Li H., Xu Q.-F., Lu J.-M. Adv. Mater., 2015, 27:5968. (d) Poon C.-T., Wu D., Lam W. H., Yam V. W.-W. Angew. Chem. Int. Ed., 2015, 54:10569.

    10. [10]

      Zhong Y.-W., Gong Z.-L., Shao J.-Y., Yao J. Coord. Chem. Rev., 2016, 312:22. (b) Gong Z.-L., Shao J.-Y., Zhong Y.-W. J. Electrochem., 2016, 22:244 (龚忠亮, 邵将洋, 钟羽武, 电化学, 2016, 22, 244). (c) Kong D.-D., Xue L.-S., Jang R., Liu B., Meng X.-G., Jin S., Qu Y.-P., Hao X., Liu S.-H. Chem. Eur. J., 2015, 21:9895. (d) Sarkar B., Schweinfurth D., Deibel D., Weisser F. Coord. Chem. Rev., 2015, 293:250.

    11. [11]

      Zhong Y.-W., Yao C.-J., Nie H.-J. Coord. Chem. Rev., 2013, 257:1357. (b) Zhang K. Y., Liu S., Zhao Q., Huang W. Coord. Chem. Rev., 2016, 319:180. (c) Zhao J., Xu K., Yang W., Wang Z., Zhong F. Chem. Soc. Rev., 2015, 44:8904. (d) Gong Z.-L., Zhong Y.-W. Sci. China Chem., 2015, 58:1444. (e) Wang D., Dong H., Zhang X., Wu Y., Shen S., Jiao B., Wu Z., Gao M., Wang G. Sci. China Chem., 2015, 58:658. (f) Cui C., Zhang Y., Choy W. C. H., Li H., Wong W.-Y. Sci. China Chem., 2015, 58:347.

    12. [12]

      Lu J.-M., Xu Q.-F., Li H., Li N.-J., He J.-H., Chen D.-Y., Wang L.-H. Chin. Polym. Bull. 2015, (10), 25 (路健美, 徐庆锋, 李华, 李娜君, 贺竞辉, 陈东赟, 王丽华, 高分子通报, 2015, (10), 25). (b) Wang C., Gu P., Hu B., Zhang Q. J. Mater. Chem. C, 2015, 3:10055.

    13. [13]

      Li C., Fan W., Straus D. A., Lei B., Asano S., Zhang D., Han J., Meyyappan M., Zhou C. J. Am. Chem. Soc., 2004, 126:7750. (b) Seo K., Konchenko A. V., Lee J., Bang G. S., Lee H. J. Am. Chem. Soc., 2008, 130:2553.

    14. [14]

      Choi T. L., Lee K. H., Joo W. J., Lee S., Lee T. W., Chae M. Y. J. Am. Chem. Soc., 2007, 129:9842.  doi: 10.1021/ja0717459

    15. [15]

      Xiang J., Wang T.-K., Zhao Q., Huang W., Ho C.-L., Wong W.-Y. J. Mater. Chem. C, 2016, 4:921.  doi: 10.1039/C5TC03042K

    16. [16]

      Basudev P., Samir D. Chem. Mater., 2008, 20:1209.  doi: 10.1021/cm7034135

    17. [17]

      Cui B.-B., Mao Z., Chen Y., Zhong Y.-W., Yu G., Zhan C., Yao J. Chem. Sci., 2015, 6:1308.  doi: 10.1039/C4SC03345K

    18. [18]

      Bandyopadhyay A., Sahu S., Higuchi M. J. Am. Chem. Soc., 2011, 133:1168.  doi: 10.1021/ja106945v

    19. [19]

      Paul N. D., Rana U., Goswami S., Mondal T. K., Goswami S. J. Am. Chem. Soc., 2012, 134:6520. (b) Goswami S., Sengupta D., Paul N. D., Mondal T. K., Goswami S. Chem. Eur. J., 2014, 20:6103.

    20. [20]

      Wang F., Tao Y., Huang W. Acta Chim. Sinica, 2015, 73:9 (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 9). (b) Liu C., Mao L., Jia H., Liao Z., Wang H., Mi B., Gao Z. Sci. China Chem., 2015, 58:640.

    21. [21]

      Liu S.-J., Lin Z.-H., Zhao Q., Ma Y., Shi H.-F., Yi M.-D., Ling Q.-D., Fan Q.-L., Zhu C.-X., Kang E.-T., Huang W. Adv. Funct. Mater., 2011, 21:979. (b) Liu S.-J., Wang P., Zhao Q., Yang H.-Y., Wong J., Sun H.-B., Dong X.-C., Lin W.-P., Huang W. Adv. Mater., 2012, 24:2901. (c) Liu S.-J., Lin W.-P., Yi M.-D., Xu W.-J., Tang C., Zhao Q., Ye S.-H., Liu X.-M., Huang W. J. Mater. Chem., 2012, 22:22964.

    22. [22]

      Wang P., Liu S.-J., Lin Z.-H., Dong X.-C., Zhao Q., Lin W.-P., Yi M.-D., Ye S.-H., Zhu C.-X., Huang W. J. Mater. Chem., 2012, 22:9576.  doi: 10.1039/c2jm16287c

    23. [23]

      Choi S., Hong S.-H., Cho S. H., Park S., Park S.-M., Kim O., Ree M. Adv. Mater., 2008, 20:1766.  doi: 10.1002/(ISSN)1521-4095

    24. [24]

      Ma Y., Chen H.-X., Zhou F., Li H., Dong H., Li Y.-Y., Hu Z.-J., Xu Q.-F., Lu J.-M. Nanoscale, 2015, 7:7659.  doi: 10.1039/C5NR00871A

    25. [25]

      Au V. K.-M.; Wu D., Yam V. W.-W. J. Am. Chem. Soc., 2015, 137:4654. (b) Hong E. Y.-H.; Poon C.-T., Yam V. W.-W. J. Am. Chem. Soc., 2016, 138:6368.

    26. [26]

      Lin J., Zheng M., Chen J., Gao X., Ma D. Inorg. Chem., 2007, 46:341.  doi: 10.1021/ic061851w

    27. [27]

      Xu G., Li J., Chen Z. Acta Chim. Sinica, 2014, 72:667 (徐广涛, 李佳, 陈忠宁, 化学学报, 2014, 72, 667). (b) Ren M., Zheng L.-M. Acta Chim. Sinica, 2015, 73:1091 (任旻, 郑丽敏, 化学学报, 2015, 73, 1091). (c) Nie K., Liu C., Zhang Y., Yao Y. Sci. China Chem., 2015, 58:1451. (d) Peng Y., Li Z., Liu Z., Yuan Q. Sci. China Chem., 2015, 58:1159.

    28. [28]

      Ling Q., Song Y., Ding S. J., Zhu C., Chan D. S. H., Kwong D.-L., Kang E.-T., Neoh K.-G. Adv. Mater., 2005, 17:455. (b) Ling Q.-D., Wang W., Song Y., Zhu C.-X., Chan D. S. H., Kang E.-T., Neoh K.-G. J. Phys. Chem. B, 2006, 110:23995.

    29. [29]

      Tan Y. P., Song Y., Teo E. Y. H., Ling Q. D., Lim S. L., Lo P. G. Q., Chan D. S. H., Kang E.-T., Zhu C. J. Electrochem. Soc. 2008, 155, H17. (b) Wang B., Fang J., Li B., You H., Ma D., Hong Z., Li W., Su Z. Thin Solid Films, 2008, 516:3123.

    30. [30]

      Fang J., You H., Chen J., Lin J., Ma D. Inorg. Chem., 2006, 45:3701.  doi: 10.1021/ic051783y

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    11. [11]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    20. [20]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

Metrics
  • PDF Downloads(0)
  • Abstract views(1214)
  • HTML views(312)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return