Citation: Zhou Nengneng, Xu Pan, Li Weipeng, Cheng Yixiang, Zhu Chengjian. Visible Light Promoted Carbodifluoroalkylation of Homopropargylic Alcohols via Concomitant 1, 4-Aryl Migration[J]. Acta Chimica Sinica, ;2017, 75(1): 60-65. doi: 10.6023/A16070375 shu

Visible Light Promoted Carbodifluoroalkylation of Homopropargylic Alcohols via Concomitant 1, 4-Aryl Migration

  • Corresponding author: Zhu Chengjian, cjzhu@nju.edu.cn
  • Received Date: 30 July 2016

    Fund Project: National Natural Science Foundation of China 21474048National Natural Science Foundation of China 21372114National Natural Science Foundation of China 21172106National Natural Science Foundation of China 21174061

Figures(2)

  • Fluorinated compounds have gained much attention because of their unique electronegativity, metabolic stability and bioavailability, and thus, the synthesis of organofluorine compounds has found wide applications in pharmaceuticals, agrochemicals, and materials science. Among them, the incorporation of a difluoromethyl group (CF2) into organic compounds is of great concern in medicinal chemistry owing to its isosterism with the hydroxyl group. Therefore, the development of new difluoroalkylation methods has attracted great interest in synthetic organic chemistry. Visible light-driven photocatalysis as an eco-friendly and powerful theme has been widely utilized in organic synthesis. In particular, free radical fluorination is emerging as a powerful tool for C-F bond formation, especially under the catalysis of visible light. Recent progress on the visible light-promoted directing difluoroalkylation using ethyl bromodifluoroacetate provided an efficient approach to the target. Herein, we report a contribution towards visible light induced carbodifluoroalkylation of homopropargylic alcohols with the use of ethyl bromodifluoroacetate as a source of difluorinated moieties. This strategy provides a facile way to access functional-difluorinated alkenes through a tandem radical difluoroalkylation and 1, 4-aryl migration process. A representative procedure for this reaction is as following:An oven-dried Schlenk tube (10 mL) was equipped with a magnetic stir bar, homopropargylic alcohols (0.2 mmol), fac-Ir (ppy)3 (0.02 equiv., 0.004 mmol), 2-bromo-2, 2-difluoroacetate (2.5 equiv. 0.5 mmol), Na2HPO4 (2 equiv., 0.4 mmol). The flask was evacuated and backfilled with Ar for 3 times. 0.5 mL of dry DMA and 0.5 mL of dry DCE were added with syringe under Ar. The tube was placed at a distance (app. 5 cm) from 33 W fluorescent light bulb, and the resulting solution was stirred at ambient temperature under visible-light irradiation. After the reaction was finished, the mixture was then diluted with MTBE (20 mL×2) and water. The combined organic layers were dried over sodium sulfate and the solvent concentrated in vacuo and the residue was purified by chromatography on silica gel to afford the corresponding products.
  • 加载中
    1. [1]

      (a) Filler, R.; Kobayashi, Y.; Yagupolskii, L. M. Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, Elsevier, Amsterdam, 1993. (b) Romanenko, V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868. (c) Muller, K.; Faeh, C.; Diederich, F.; Science 2007, 317, 1881. (d) Furuya, T.; Kuttruff, C.; Ritter, T.; Curr. Opin.Drug Discovery Dev. 2008, 11, 80. (e) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, 2009. (f) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed.2013, 52, 8214. (g) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90. (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.). (h) Zhang, K.; Xu, X.; Qing, F. Chin. J. Org. Chem. 2015, 35, 556. (张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)

    2. [2]

      For some reviews on fluorination, see: (a) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160. (b) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem. Soc. Rev. 2010, 39, 558. (c) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (d) Lin, A.; Huehls, B.; Yang. J. Org. Chem. Front. 2014, 1, 434. For recent examples, see: (e) Li, W.; Zhu, Y.; Duan, Y.; Zhang, M.; Zhu, C. Adv. Synth. Catal. 2015, 357, 1277. (f) Shen, X.; Miao, W.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2014, 53, 775. (g) Shen, X.; Min, Z.; Ni, C.; Zhang, W.; Hu, J. Chem. Sci. 2014, 5, 117.

    3. [3]

      For some reviews on trifluoromethylation, see: (a) Nie, J.; Guo, H.; Cahard, D.; Ma, J. Chem. Rev. 2011, 111, 455. (b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (c) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950. (d) Furuya, T.; , Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. For recent examples, see: (e) Gao, P.; Shen, Y. W.; Fang, R.; Hao, X. H.; Qiu, Z. H.; Yang, F.; Yan, X. B.; Gong, X. J.; Liu, X. Y.; Liang, Y. M. Angew. Chem., Int. Ed. 2014, 53, 7629. (f) Liu, J. B.; Chen, C.; Chu, L. L.; Qing. F. L. Angew. Chem., Int. Ed. 2015, 54, 11839. (g) Sahoo, B.; Li, J. L.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 11577.

    4. [4]

      For recent examples, see: (a) Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2013, 52, 12390. (b) Min, Q.; Yin, Z.; Feng, Z.; Guo, W.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230. (c) Feng, Z.; Min, Q.; Xiao, Y.; Zhang, B.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 1669. (d) Wang, X.; Liu, G.; Xu, X.; Shibata, N.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2014, 53, 1827. (e) Chang, D.; Gu, Y.; Shen, Q. Chem. Eur. J. 2015, 21, 6074. (f) He, Y. T.; Wang, Q.; Li, L. H.; Liu, X. Y.; Xu, P. F.; Liang, Y. M. Org. Lett. 2015, 17, 5188. (g) Lin, Q. Y.; Xu, X. H.; Zhang, K.; Qing, F. L. Angew. Chem., Int. Ed. 2016, 55, 1479. (h) Xie, J.; Zhang, T.; Chen, F. Mehrkens, N.; Rominger, F.; Rudolph, M.; Hashmi, A. S. Angew. Chem., Int. Ed. 2016, 55, 2934.

    5. [5]

      (a) Blackburn, C. M.; England, D. A.; Kolkmann, F. J. Chem. Soc. Chem. Commun. 1981, 930. (b) Blackburn, G. M.; Kent, D. E.; Kolkmann, F. J. Chem. Soc., Perkin Trans. 1 1984, 1119. (c) Erickson, J. A.; Mcloughlin, J. I. J. Org. Chem. 1995, 60, 1626. (d) Kitazume, T.; Kamazaki, T. Experimental Methods in Organic Fluorine Chemistry, Gordon and Breach Science, Tokyo, 1998.

    6. [6]

      For recent reviews on photoredox catalysis, see: (a) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828. (b) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527. (c) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (d) Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617. (e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (f) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387. (g) Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36.

    7. [7]

      (a) Yu, C.; Iqbal, N.; Park, S.; Cho, E. Chem. Commun. 2014, 50, 12884. (b) Sun, X.; Yu, S. Org. Lett. 2014, 16, 2398. (c) Su, Y. M.; Hou, Y.; Yin, F.; Xu, Y. M.; Li, Y.; Zheng, X.; Wang, X. S.; Org. Lett. 2014, 16, 2958. (d) Wang, L.; Wei, X.; Jia, W.; Zhong, J.; Wu. L.; Liu, Q. Org. Lett. 2014, 16, 5842. (e) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160. (f) Wallentin, C. J.; Nguyen, J. D.; Finkbeiner. P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875. (g) Jung, J.; Kim, E.; You. Y.; Cho, E. Adv. Synth. Catal. 2014, 356, 2741. (h) Gu, Z. X.; Zhang, H. L.; Xu, P.; Cheng, Y. X.; Zhu. C. J. Adv. Synth. Catal. 2015, 357, 3057. (j) Xu, P.; Hu, K. D.; Gu, Z. X.; Cheng, Y. X.; Zhu, C. J. Chem. Commun. 2015, 51, 7222.

    8. [8]

      (a) Li, W.; Zhu, X.; Mao, H.; Tang, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2014, 50, 7521. (b) Qu, C. H.; Xu, P.; Ma, W. J.; Cheng, Y. X.; Zhu, C. J. Chem. Commun. 2015, 51, 13508. (c) Gu, Z. X.; Zhang, H. L.; Xu, P.; Cheng, Y. X.; Zhu, C. J. Adv. Synth. Catal. 2015, 357, 3057. (d) Xu, P.; Wang, G. Q.; Zhu, Y. C.; Li, W. P.; Cheng, Y. X.; Li, S. H.; Zhu, C. J. Angew. Chem., Int. Ed. 2016, 55, 2939.

    9. [9]

      For reviews on aryl migration: (a) Studer, A.; Bossart, M. Tetrahedron 2001, 57, 9649. (b) Chen, Z. M.; Zhang, X. M.; Tu, Y. Q. Chem. Soc. Rev. 2015, 44, 5220.

    10. [10]

      For the aryldifluoroacetylation of alkynes reaction, see: Fu, W. J.; Zhu, M.; Zou, G. L.; Xu, C.; Wang, Z. Q.; Ji, B. M. J. Org. Chem. 2015, 80, 4766. 

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(15)
  • Abstract views(2170)
  • HTML views(340)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return