Citation: Li Ran, Xu Wenyuan, Zhao Jinqin, Yu Xin, Wang Wenguang, Tung Chen-Ho. Azo-bridged New Diiron Carbonyl Complex: Synthesis of Fe2(NR)2-(CO)6-x(PR3)x and the Derivatives[J]. Acta Chimica Sinica, ;2017, 75(1): 92-98. doi: 10.6023/A16070364 shu

Azo-bridged New Diiron Carbonyl Complex: Synthesis of Fe2(NR)2-(CO)6-x(PR3)x and the Derivatives

  • Corresponding author: Wang Wenguang, wwg@sdu.edu.cn
  • Received Date: 27 July 2016

    Fund Project: National Natural Science Foundation of China 21402107National Natural Science Foundation of China 91427303the "1000 Youth Talents Plan" and National Undergraduate Training Programs for Innovation and Entrepreneurship 201510422032

Figures(8)

  • Heating the toluene solution of 4, 4-dimethyl-4, 5-dihydro-3H-pyrazole (N2C5H10) and Fe3(CO)12 at reflux for 1 h produces diiron hexacarbonyls Fe2(N2C5H10)(CO)6 (1, νCO(CH2Cl2):2069, 2022, 1986 cm-1). Compound 1 exhibits 34 e- configuration, in which (N2C5H10)2- coordinates to diiron (FeIFeI) centers featuring a butterfly structure. To a solution of 1 in toluene was added one equiv. of decarbonyl agent Me3NO in MeCN, and the mixture was stirred at room temperature for 20 min. Then, one equiv. of monophosphine was added. After 3 h, the solvent was removed and the residue was extracted into 5 mL CH2Cl2. The product Fe2(N2C5H10)(CO)5(PR3) (PR3=PPh3, 2a; PCy3, 2b) was obtained as brown crystals by allowing a pentane layer to diffuse into the CH2Cl2 solution at -20℃. 31P NMR spectra exhibit a singlet at δ 67 for 2a and δ 70 for 2b in CH2Cl2, respectively. In IR spectra, the νCO bands for 2a were displayed at 2032, 1968, 1952, 1907 cm-1, which are compared to 2024, 1959, 1937, 1893 cm-1 for 2b. Photolysis the toluene solution of 1 in the presence of chelating diphosphine ligands such as dppe[dppe=1, 2-C2H4(PPh2)2] and dppbz[dppbz=1, 2-C6H4(PPh2)2] affords diiron diphosphine carbonyl compounds. For dppe, the product was Fe2(N2C5H10)(CO)4(μ-dppe) (3a, 31P NMR (CD2Cl2):δ 95, FT-IR (CH2Cl2, νCO):1984, 1940, 1925 and 1900 cm-1), in which dppe is bridging the two iron centers. For more rigid diphosphine ligand dppbz, X-ray crystallographic analysis reveals the structure of Fe2(N2C5H10)(μ-CO)(CO)4(dppbz)[3b, 31P NMR (CD2Cl2):δ 93]. In 3b, (N2C5H10)2- coordinates to diiron centers in a planar mode, and dppbz chelates at one Fe site by the replacement of one CO ligand. Compound 3b features a Fe-CO-Fe rotated structure with a bridging CO ligand between the two Fe centers. The νCO bands for 3b were displayed at 1990, 1947, 1919, 1895 cm-1. With such a rotated structure, compound 3b provides a new approach for synthetic models of Hred state of [FeFe]-H2ase. The CCDC number for 1, 2a, 2b, 3a and 3b are 1494954, 1494955, 1494956, 1494966 and 1494957. All the compounds were well characterized by NMR, IR spectroscopy and elemental analysis.
  • 加载中
    1. [1]

      (a) Lubitz, W.; Reijerse, E.; van Gastel, M. Chem. Rev. 2007, 107, 4331;(b) Ginovska-Pangovska, B.; Ho, M.-H.; Linehan, J. C.; Cheng, Y.; Dupuis, M.; Raugei, S.; Shaw, W. J. Biochim. Biophys. Acta. Bioenerg. 2014, 1837, 131;(c) Frey, M. ChemBioChem 2002, 3, 153;(d) Silakov, A.; Kamp, C.; Reijerse, E.; Happe, T.; Lubitz, W. Biochemistry 2009, 48, 7780;(e) Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Coord. Chem. Rev. 2009, 253, 1476;(f) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem. Rev. 2007, 107, 4273.

    2. [2]

      (a) Siegbahn, P. E. M.; Tye, J. W.; Hall, M. B. Chem. Rev. 2007, 107, 4414.(b) Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.; Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J.-M.; Reijerse, E.; Lubitz, W.; Happe, T.; Artero, V.; Fontecave, M. Nature 2013, 499, 66.

    3. [3]

      (a) Nicolet, Y.; Piras, C.; Legrand, P. C.; Hatchikian E.; Fontecilla-Camps, J. C. Structure 1999, 7, 13.(b) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853.(c) Pandey, A. S.; Harris, T. V.; Giles, L. J.; Peters, J. W.; Szilagyi, R. K. J. Am. Chem. Soc. 2008, 130, 4533.

    4. [4]

      Adams, M. W. W. J. Biol. Chem. 1987, 262, 15054.

    5. [5]

      Kubas, G. J. Chem. Rev. 2007, 107, 4152.  doi: 10.1021/cr050197j

    6. [6]

      Knörzer, P.; Silakov, A.; Foster, C. E.; Armstrong, F. A.; Lubitz, W.; Happe, T. J. Biol. Chem. 2012, 287, 1489.  doi: 10.1074/jbc.M111.305797

    7. [7]

      Simmons, T. R.; Berggren, G.; Bacchi, M.; Fontecave, M.; Artero, V. Coord. Chem. Rev. 2014, 270-271, 127.

    8. [8]

      Chernev, P.; Lambertz, C.; Brünje, A.; Leidel, N.; Sigfridsson, K. G. V.; Kositzki, R.; Hsieh, C.-H.; Yao, S.; Schiwon, R.; Driess, M.; Limberg, C.; Happe, T.; Haumann, M. Inorg. Chem. 2014, 53, 12164.  doi: 10.1021/ic502047q

    9. [9]

      Tschierlei, S.; Ott, S.; Lomoth, R. Energy Environ. Sci. 2011, 4, 2340.  doi: 10.1039/c0ee00708k

    10. [10]

      (a) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710.(b) Song, L.-C.; Yang, Z.-Y.; Bian, H.-Z.; Liu, Y.; Wang, H.-T.; Liu, X.-F.; Hu, Q.-M. Organometallics 2005, 24, 6126.(c) Song, L.-C.; Liu, X.-F.; Ming, J.-B.; Ge, J.-H.; Xie, Z.-J.; Hu, Q.-M. Organometallics 2010, 29, 610.(d) Song, L. C. Acc. Chem. Res. 2005, 38, 21.(e) Gao, W. M.; Liu, J. H.; Akermark, B.; Sun, L. C. Inorg. Chem. 2006, 45, 9169.

    11. [11]

      (a) Dong, W.; Wang, M.; Liu, X.; Jin, K.; Li, G.; Wang, F.; Sun, L. Chem. Commun. 2006, 305.(b) Wang, N.; Wang, M.; Zhang, T.; Li, P.; Liu, J.; Sun, L. Chem. Commun. 2008, 5800.(c) Ezzaher, S.; Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Inorg. Chem. 2009, 48, 2;(d) Li, P.; Wang, M.; Chen, L.; Liu, J.; Zhao, Z.; Sun, L. Dalton Trans. 2009, 1919.(e) Schwartz, L.; Eilers, G.; Eriksson, L.; Gogoll, A.; Lomoth, R.; Ott, S. Chem. Commun. 2006, 520.(f) Eilers, G.; Schwartz, L.; Stein, M.; Zampella, G.; de Gioia, L.; Ott, S.; Lomoth, R. Chem. Eur. J. 2007, 13, 7075.

    12. [12]

      (a) Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Angew. Chem., Int. Ed. 1999, 38, 3178.(b) Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 1999, 121, 9736.

    13. [13]

      (a) Capon, J.-F.; El Hassnaoui, S.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. Organometallics 2005, 24, 2020.(b) Morvan, D.; Capon, J.-F.; Gloaguen, F.; Le Goff, A.; Marchivie, M.; Michaud, F.; Schollhammer, P.; Talarmin, J.; Yaouanc, J.-J.; Pichon, R.; Kervarec, N. Organometallics 2007, 26, 2042.(c) Tye, J. W.; Lee, J.; Wang, H.-W.; Mejia-Rodriguez, R.; Reibenspies, J. H.; Hall, M. B.; Darensbourg, M. Y. Inorg. Chem. 2005, 44, 5550.

    14. [14]

      (a) Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Chem. Rev. 2016, doi:10.1021/acs.chemrev.6b0-0180.(b)Rauchfuss,T.B.Acc.Chem.Res.2015,48,2107.(c)Lubitz,W.;Ogata,H.;Rüdiger,O.;Reijerse,E.Chem.Rev.2014,114,4081.(d)Wang,N.;Wang,M.;Chen,L.;Sun,L.C.DaltonTrans.2013,42,12059.(e)Wang,M.;Sun,L.ChemSusChem2010,3,551.

    15. [15]

      (a) Tard, C. D.; Pickett, C. J. Chem. Rev. 2009, 109, 2245.(b) McGlynn, S. E.; Mulder, D. W.; Shepard, E. M.; Broderick, J. B.; Peters, J. W. Dalton Trans. 2009, 4274.(c) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100.(d) De Lacey, A. L.; Fernández, V. M.; Rousset, M.; Cammack, R. Chem. Rev. 2007, 107, 4304.

    16. [16]

    17. [17]

      Liu, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 2007, 129, 7008.  doi: 10.1021/ja071851a

    18. [18]

      Justice, A. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 2007, 46, 6152.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      (a) Wang, N.; Wang, M.; Wang, Y.; Zheng, D.; Han, H.; Ahlquist, M. S. G.; Sun, L. J. Am. Chem. Soc. 2013, 135, 13688.(b) Mulder, D. W.; Ratzloff, M. W.; Shepard, E. M.; Byer, A. S.; Noone, S. M.; Peters, J. W.; Broderick, J. B.; King, P. W. J. Am. Chem. Soc. 2013, 135, 6921.(c) Camara, J. M.; Rauchfuss, T. B. Nat. Chem. 2012, 4, 26.(d) Camara, J. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 2011, 133, 8098.

    20. [20]

      (a) Barton, B. E.; Zampella, G.; Justice, A. K.; De Gioia, L.; Rauchfuss, T. B.; Wilson, S. R. Dalton Trans. 2010, 39, 3011.(b) Carroll, M. E.; Barton, B. E.; Rauchfuss, T. B.; Carroll, P. J. J. Am. Chem. Soc. 2012, 134, 1884.

    21. [21]

      Barton, B. E.; Rauchfuss, T. B. Inorg. Chem. 2008, 47, 2261.  doi: 10.1021/ic800030y

    22. [22]

      Tye, J. W.; Darensbourg, M. Y.; Hall, M. B. Inorg. Chem. 2006, 45, 1552.  doi: 10.1021/ic051231f

    23. [23]

      Wang, W.; Rauchfuss, T. B.; Moore, C. E.; Rheingold, A. L.; De Gioia, L.; Zampella, G. Chem. Eur. J. 2013, 19, 15476.  doi: 10.1002/chem.v19.46

    24. [24]

      Munery, S.; Capon, J.-F.; De Gioia, L.; Elleouet, C.; Greco, C.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J.; Zampella, G. Chem. Eur. J. 2013, 19, 15458.  doi: 10.1002/chem.v19.46

    25. [25]

      (a) Harb, M. K.; Apfel, U.-P.; Kübel, J.; Görls, H.; Felton, G. A. N.; Sakamoto, T.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-khateeb, M.; Weigand, W. Organometallics 2009, 28, 6666.(b) Harb, M. K.; Niksch, T.; Windhager, J.; Görls, H.; Holze, R.; Lockett, L. T.; Okumura, N.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-khateeb, M.; Weigand, W. Organometallics 2009, 28, 1039.(c) Harb, M. K.; Windhager, J.; Daraosheh, A.; Gorls, H.; Lockett, L. T.; Okumura, N.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-Khateeb, M.; Weigand, W. Eur. J. Inorg. Chem. 2009, 3414.

    26. [26]

      (a) Das, P.; Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J.; Muir, K. W. Inorg. Chem. 2004, 43, 8203.(b) Zaffaroni, R.; Rauchfuss, T. B.; Fuller, A.; De Gioia, L.; Zampella, G. Organometallics 2013, 32, 232.(c) Gimbert-Surinach, C.; Bhadbhade, M.; Colbran, S. B. Organometallics 2012, 31, 3480.

    27. [27]

      Volkers, P.; Rauchfuss, T. B. J. Inorg. Biochem. 2007, 101, 1748.  doi: 10.1016/j.jinorgbio.2007.05.005

    28. [28]

      (a) Carroll, M. E.; Chen, J.; Gray, D. E.; Lansing, J. C.; Rauchfuss, T. B.; Schilter, D.; Volkers, P. I.; Wilson, S. R. Organometallics 2014, 33, 858.(b) Justice, A. K.; Zampella, G.; De Gioia, L.; Rauchfuss, T. B.; van der Vlugt, J. I.; Wilson, S. R. Inorg. Chem. 2007, 46, 1655.

    29. [29]

      Adam, F. I.; Hogarth, G.; Kabir, S. E.; Richards, I. C. R. Chim. 2008, 11, 890.  doi: 10.1016/j.crci.2008.03.003

    30. [30]

      van Loevezijn, A.; Venhorst, J.; Iwema Bakker, W. I.; de Korte, C. G.; de Looff, W.; Verhoog, S.; van Wees, J.-W.; van Hoeve, M.; van de Woestijne, R. P.; van der Neut, M. A. W.; Borst, A. J. M.; van Dongen, M. J. P.; de Bruin, N. M. W. J.; Keizer, H. G.; Kruse, C. G. J. Med. Chem. 2011, 54, 7030.  doi: 10.1021/jm200466r

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    15. [15]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(4)
  • Abstract views(990)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return