Citation: Li Ran, Xu Wenyuan, Zhao Jinqin, Yu Xin, Wang Wenguang, Tung Chen-Ho. Azo-bridged New Diiron Carbonyl Complex: Synthesis of Fe2(NR)2-(CO)6-x(PR3)x and the Derivatives[J]. Acta Chimica Sinica, ;2017, 75(1): 92-98. doi: 10.6023/A16070364 shu

Azo-bridged New Diiron Carbonyl Complex: Synthesis of Fe2(NR)2-(CO)6-x(PR3)x and the Derivatives

  • Corresponding author: Wang Wenguang, wwg@sdu.edu.cn
  • Received Date: 27 July 2016

    Fund Project: National Natural Science Foundation of China 21402107National Natural Science Foundation of China 91427303the "1000 Youth Talents Plan" and National Undergraduate Training Programs for Innovation and Entrepreneurship 201510422032

Figures(8)

  • Heating the toluene solution of 4, 4-dimethyl-4, 5-dihydro-3H-pyrazole (N2C5H10) and Fe3(CO)12 at reflux for 1 h produces diiron hexacarbonyls Fe2(N2C5H10)(CO)6 (1, νCO(CH2Cl2):2069, 2022, 1986 cm-1). Compound 1 exhibits 34 e- configuration, in which (N2C5H10)2- coordinates to diiron (FeIFeI) centers featuring a butterfly structure. To a solution of 1 in toluene was added one equiv. of decarbonyl agent Me3NO in MeCN, and the mixture was stirred at room temperature for 20 min. Then, one equiv. of monophosphine was added. After 3 h, the solvent was removed and the residue was extracted into 5 mL CH2Cl2. The product Fe2(N2C5H10)(CO)5(PR3) (PR3=PPh3, 2a; PCy3, 2b) was obtained as brown crystals by allowing a pentane layer to diffuse into the CH2Cl2 solution at -20℃. 31P NMR spectra exhibit a singlet at δ 67 for 2a and δ 70 for 2b in CH2Cl2, respectively. In IR spectra, the νCO bands for 2a were displayed at 2032, 1968, 1952, 1907 cm-1, which are compared to 2024, 1959, 1937, 1893 cm-1 for 2b. Photolysis the toluene solution of 1 in the presence of chelating diphosphine ligands such as dppe[dppe=1, 2-C2H4(PPh2)2] and dppbz[dppbz=1, 2-C6H4(PPh2)2] affords diiron diphosphine carbonyl compounds. For dppe, the product was Fe2(N2C5H10)(CO)4(μ-dppe) (3a, 31P NMR (CD2Cl2):δ 95, FT-IR (CH2Cl2, νCO):1984, 1940, 1925 and 1900 cm-1), in which dppe is bridging the two iron centers. For more rigid diphosphine ligand dppbz, X-ray crystallographic analysis reveals the structure of Fe2(N2C5H10)(μ-CO)(CO)4(dppbz)[3b, 31P NMR (CD2Cl2):δ 93]. In 3b, (N2C5H10)2- coordinates to diiron centers in a planar mode, and dppbz chelates at one Fe site by the replacement of one CO ligand. Compound 3b features a Fe-CO-Fe rotated structure with a bridging CO ligand between the two Fe centers. The νCO bands for 3b were displayed at 1990, 1947, 1919, 1895 cm-1. With such a rotated structure, compound 3b provides a new approach for synthetic models of Hred state of [FeFe]-H2ase. The CCDC number for 1, 2a, 2b, 3a and 3b are 1494954, 1494955, 1494956, 1494966 and 1494957. All the compounds were well characterized by NMR, IR spectroscopy and elemental analysis.

    1. [1]

      (a) Lubitz, W.; Reijerse, E.; van Gastel, M. Chem. Rev. 2007, 107, 4331;(b) Ginovska-Pangovska, B.; Ho, M.-H.; Linehan, J. C.; Cheng, Y.; Dupuis, M.; Raugei, S.; Shaw, W. J. Biochim. Biophys. Acta. Bioenerg. 2014, 1837, 131;(c) Frey, M. ChemBioChem 2002, 3, 153;(d) Silakov, A.; Kamp, C.; Reijerse, E.; Happe, T.; Lubitz, W. Biochemistry 2009, 48, 7780;(e) Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Coord. Chem. Rev. 2009, 253, 1476;(f) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem. Rev. 2007, 107, 4273.

    2. [2]

      (a) Siegbahn, P. E. M.; Tye, J. W.; Hall, M. B. Chem. Rev. 2007, 107, 4414.(b) Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.; Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J.-M.; Reijerse, E.; Lubitz, W.; Happe, T.; Artero, V.; Fontecave, M. Nature 2013, 499, 66.

    3. [3]

      (a) Nicolet, Y.; Piras, C.; Legrand, P. C.; Hatchikian E.; Fontecilla-Camps, J. C. Structure 1999, 7, 13.(b) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853.(c) Pandey, A. S.; Harris, T. V.; Giles, L. J.; Peters, J. W.; Szilagyi, R. K. J. Am. Chem. Soc. 2008, 130, 4533.

    4. [4]

      Adams, M. W. W. J. Biol. Chem. 1987, 262, 15054.

    5. [5]

      Kubas, G. J. Chem. Rev. 2007, 107, 4152.  doi: 10.1021/cr050197j

    6. [6]

      Knörzer, P.; Silakov, A.; Foster, C. E.; Armstrong, F. A.; Lubitz, W.; Happe, T. J. Biol. Chem. 2012, 287, 1489.  doi: 10.1074/jbc.M111.305797

    7. [7]

      Simmons, T. R.; Berggren, G.; Bacchi, M.; Fontecave, M.; Artero, V. Coord. Chem. Rev. 2014, 270-271, 127.

    8. [8]

      Chernev, P.; Lambertz, C.; Brünje, A.; Leidel, N.; Sigfridsson, K. G. V.; Kositzki, R.; Hsieh, C.-H.; Yao, S.; Schiwon, R.; Driess, M.; Limberg, C.; Happe, T.; Haumann, M. Inorg. Chem. 2014, 53, 12164.  doi: 10.1021/ic502047q

    9. [9]

      Tschierlei, S.; Ott, S.; Lomoth, R. Energy Environ. Sci. 2011, 4, 2340.  doi: 10.1039/c0ee00708k

    10. [10]

      (a) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710.(b) Song, L.-C.; Yang, Z.-Y.; Bian, H.-Z.; Liu, Y.; Wang, H.-T.; Liu, X.-F.; Hu, Q.-M. Organometallics 2005, 24, 6126.(c) Song, L.-C.; Liu, X.-F.; Ming, J.-B.; Ge, J.-H.; Xie, Z.-J.; Hu, Q.-M. Organometallics 2010, 29, 610.(d) Song, L. C. Acc. Chem. Res. 2005, 38, 21.(e) Gao, W. M.; Liu, J. H.; Akermark, B.; Sun, L. C. Inorg. Chem. 2006, 45, 9169.

    11. [11]

      (a) Dong, W.; Wang, M.; Liu, X.; Jin, K.; Li, G.; Wang, F.; Sun, L. Chem. Commun. 2006, 305.(b) Wang, N.; Wang, M.; Zhang, T.; Li, P.; Liu, J.; Sun, L. Chem. Commun. 2008, 5800.(c) Ezzaher, S.; Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Inorg. Chem. 2009, 48, 2;(d) Li, P.; Wang, M.; Chen, L.; Liu, J.; Zhao, Z.; Sun, L. Dalton Trans. 2009, 1919.(e) Schwartz, L.; Eilers, G.; Eriksson, L.; Gogoll, A.; Lomoth, R.; Ott, S. Chem. Commun. 2006, 520.(f) Eilers, G.; Schwartz, L.; Stein, M.; Zampella, G.; de Gioia, L.; Ott, S.; Lomoth, R. Chem. Eur. J. 2007, 13, 7075.

    12. [12]

      (a) Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Angew. Chem., Int. Ed. 1999, 38, 3178.(b) Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 1999, 121, 9736.

    13. [13]

      (a) Capon, J.-F.; El Hassnaoui, S.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. Organometallics 2005, 24, 2020.(b) Morvan, D.; Capon, J.-F.; Gloaguen, F.; Le Goff, A.; Marchivie, M.; Michaud, F.; Schollhammer, P.; Talarmin, J.; Yaouanc, J.-J.; Pichon, R.; Kervarec, N. Organometallics 2007, 26, 2042.(c) Tye, J. W.; Lee, J.; Wang, H.-W.; Mejia-Rodriguez, R.; Reibenspies, J. H.; Hall, M. B.; Darensbourg, M. Y. Inorg. Chem. 2005, 44, 5550.

    14. [14]

      (a) Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Chem. Rev. 2016, doi:10.1021/acs.chemrev.6b0-0180.(b)Rauchfuss,T.B.Acc.Chem.Res.2015,48,2107.(c)Lubitz,W.;Ogata,H.;Rüdiger,O.;Reijerse,E.Chem.Rev.2014,114,4081.(d)Wang,N.;Wang,M.;Chen,L.;Sun,L.C.DaltonTrans.2013,42,12059.(e)Wang,M.;Sun,L.ChemSusChem2010,3,551.

    15. [15]

      (a) Tard, C. D.; Pickett, C. J. Chem. Rev. 2009, 109, 2245.(b) McGlynn, S. E.; Mulder, D. W.; Shepard, E. M.; Broderick, J. B.; Peters, J. W. Dalton Trans. 2009, 4274.(c) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100.(d) De Lacey, A. L.; Fernández, V. M.; Rousset, M.; Cammack, R. Chem. Rev. 2007, 107, 4304.

    16. [16]

    17. [17]

      Liu, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 2007, 129, 7008.  doi: 10.1021/ja071851a

    18. [18]

      Justice, A. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 2007, 46, 6152.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      (a) Wang, N.; Wang, M.; Wang, Y.; Zheng, D.; Han, H.; Ahlquist, M. S. G.; Sun, L. J. Am. Chem. Soc. 2013, 135, 13688.(b) Mulder, D. W.; Ratzloff, M. W.; Shepard, E. M.; Byer, A. S.; Noone, S. M.; Peters, J. W.; Broderick, J. B.; King, P. W. J. Am. Chem. Soc. 2013, 135, 6921.(c) Camara, J. M.; Rauchfuss, T. B. Nat. Chem. 2012, 4, 26.(d) Camara, J. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 2011, 133, 8098.

    20. [20]

      (a) Barton, B. E.; Zampella, G.; Justice, A. K.; De Gioia, L.; Rauchfuss, T. B.; Wilson, S. R. Dalton Trans. 2010, 39, 3011.(b) Carroll, M. E.; Barton, B. E.; Rauchfuss, T. B.; Carroll, P. J. J. Am. Chem. Soc. 2012, 134, 1884.

    21. [21]

      Barton, B. E.; Rauchfuss, T. B. Inorg. Chem. 2008, 47, 2261.  doi: 10.1021/ic800030y

    22. [22]

      Tye, J. W.; Darensbourg, M. Y.; Hall, M. B. Inorg. Chem. 2006, 45, 1552.  doi: 10.1021/ic051231f

    23. [23]

      Wang, W.; Rauchfuss, T. B.; Moore, C. E.; Rheingold, A. L.; De Gioia, L.; Zampella, G. Chem. Eur. J. 2013, 19, 15476.  doi: 10.1002/chem.v19.46

    24. [24]

      Munery, S.; Capon, J.-F.; De Gioia, L.; Elleouet, C.; Greco, C.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J.; Zampella, G. Chem. Eur. J. 2013, 19, 15458.  doi: 10.1002/chem.v19.46

    25. [25]

      (a) Harb, M. K.; Apfel, U.-P.; Kübel, J.; Görls, H.; Felton, G. A. N.; Sakamoto, T.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-khateeb, M.; Weigand, W. Organometallics 2009, 28, 6666.(b) Harb, M. K.; Niksch, T.; Windhager, J.; Görls, H.; Holze, R.; Lockett, L. T.; Okumura, N.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-khateeb, M.; Weigand, W. Organometallics 2009, 28, 1039.(c) Harb, M. K.; Windhager, J.; Daraosheh, A.; Gorls, H.; Lockett, L. T.; Okumura, N.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-Khateeb, M.; Weigand, W. Eur. J. Inorg. Chem. 2009, 3414.

    26. [26]

      (a) Das, P.; Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J.; Muir, K. W. Inorg. Chem. 2004, 43, 8203.(b) Zaffaroni, R.; Rauchfuss, T. B.; Fuller, A.; De Gioia, L.; Zampella, G. Organometallics 2013, 32, 232.(c) Gimbert-Surinach, C.; Bhadbhade, M.; Colbran, S. B. Organometallics 2012, 31, 3480.

    27. [27]

      Volkers, P.; Rauchfuss, T. B. J. Inorg. Biochem. 2007, 101, 1748.  doi: 10.1016/j.jinorgbio.2007.05.005

    28. [28]

      (a) Carroll, M. E.; Chen, J.; Gray, D. E.; Lansing, J. C.; Rauchfuss, T. B.; Schilter, D.; Volkers, P. I.; Wilson, S. R. Organometallics 2014, 33, 858.(b) Justice, A. K.; Zampella, G.; De Gioia, L.; Rauchfuss, T. B.; van der Vlugt, J. I.; Wilson, S. R. Inorg. Chem. 2007, 46, 1655.

    29. [29]

      Adam, F. I.; Hogarth, G.; Kabir, S. E.; Richards, I. C. R. Chim. 2008, 11, 890.  doi: 10.1016/j.crci.2008.03.003

    30. [30]

      van Loevezijn, A.; Venhorst, J.; Iwema Bakker, W. I.; de Korte, C. G.; de Looff, W.; Verhoog, S.; van Wees, J.-W.; van Hoeve, M.; van de Woestijne, R. P.; van der Neut, M. A. W.; Borst, A. J. M.; van Dongen, M. J. P.; de Bruin, N. M. W. J.; Keizer, H. G.; Kruse, C. G. J. Med. Chem. 2011, 54, 7030.  doi: 10.1021/jm200466r

    1. [1]

      (a) Lubitz, W.; Reijerse, E.; van Gastel, M. Chem. Rev. 2007, 107, 4331;(b) Ginovska-Pangovska, B.; Ho, M.-H.; Linehan, J. C.; Cheng, Y.; Dupuis, M.; Raugei, S.; Shaw, W. J. Biochim. Biophys. Acta. Bioenerg. 2014, 1837, 131;(c) Frey, M. ChemBioChem 2002, 3, 153;(d) Silakov, A.; Kamp, C.; Reijerse, E.; Happe, T.; Lubitz, W. Biochemistry 2009, 48, 7780;(e) Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Coord. Chem. Rev. 2009, 253, 1476;(f) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem. Rev. 2007, 107, 4273.

    2. [2]

      (a) Siegbahn, P. E. M.; Tye, J. W.; Hall, M. B. Chem. Rev. 2007, 107, 4414.(b) Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.; Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J.-M.; Reijerse, E.; Lubitz, W.; Happe, T.; Artero, V.; Fontecave, M. Nature 2013, 499, 66.

    3. [3]

      (a) Nicolet, Y.; Piras, C.; Legrand, P. C.; Hatchikian E.; Fontecilla-Camps, J. C. Structure 1999, 7, 13.(b) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853.(c) Pandey, A. S.; Harris, T. V.; Giles, L. J.; Peters, J. W.; Szilagyi, R. K. J. Am. Chem. Soc. 2008, 130, 4533.

    4. [4]

      Adams, M. W. W. J. Biol. Chem. 1987, 262, 15054.

    5. [5]

      Kubas, G. J. Chem. Rev. 2007, 107, 4152.  doi: 10.1021/cr050197j

    6. [6]

      Knörzer, P.; Silakov, A.; Foster, C. E.; Armstrong, F. A.; Lubitz, W.; Happe, T. J. Biol. Chem. 2012, 287, 1489.  doi: 10.1074/jbc.M111.305797

    7. [7]

      Simmons, T. R.; Berggren, G.; Bacchi, M.; Fontecave, M.; Artero, V. Coord. Chem. Rev. 2014, 270-271, 127.

    8. [8]

      Chernev, P.; Lambertz, C.; Brünje, A.; Leidel, N.; Sigfridsson, K. G. V.; Kositzki, R.; Hsieh, C.-H.; Yao, S.; Schiwon, R.; Driess, M.; Limberg, C.; Happe, T.; Haumann, M. Inorg. Chem. 2014, 53, 12164.  doi: 10.1021/ic502047q

    9. [9]

      Tschierlei, S.; Ott, S.; Lomoth, R. Energy Environ. Sci. 2011, 4, 2340.  doi: 10.1039/c0ee00708k

    10. [10]

      (a) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710.(b) Song, L.-C.; Yang, Z.-Y.; Bian, H.-Z.; Liu, Y.; Wang, H.-T.; Liu, X.-F.; Hu, Q.-M. Organometallics 2005, 24, 6126.(c) Song, L.-C.; Liu, X.-F.; Ming, J.-B.; Ge, J.-H.; Xie, Z.-J.; Hu, Q.-M. Organometallics 2010, 29, 610.(d) Song, L. C. Acc. Chem. Res. 2005, 38, 21.(e) Gao, W. M.; Liu, J. H.; Akermark, B.; Sun, L. C. Inorg. Chem. 2006, 45, 9169.

    11. [11]

      (a) Dong, W.; Wang, M.; Liu, X.; Jin, K.; Li, G.; Wang, F.; Sun, L. Chem. Commun. 2006, 305.(b) Wang, N.; Wang, M.; Zhang, T.; Li, P.; Liu, J.; Sun, L. Chem. Commun. 2008, 5800.(c) Ezzaher, S.; Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Inorg. Chem. 2009, 48, 2;(d) Li, P.; Wang, M.; Chen, L.; Liu, J.; Zhao, Z.; Sun, L. Dalton Trans. 2009, 1919.(e) Schwartz, L.; Eilers, G.; Eriksson, L.; Gogoll, A.; Lomoth, R.; Ott, S. Chem. Commun. 2006, 520.(f) Eilers, G.; Schwartz, L.; Stein, M.; Zampella, G.; de Gioia, L.; Ott, S.; Lomoth, R. Chem. Eur. J. 2007, 13, 7075.

    12. [12]

      (a) Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Angew. Chem., Int. Ed. 1999, 38, 3178.(b) Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 1999, 121, 9736.

    13. [13]

      (a) Capon, J.-F.; El Hassnaoui, S.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. Organometallics 2005, 24, 2020.(b) Morvan, D.; Capon, J.-F.; Gloaguen, F.; Le Goff, A.; Marchivie, M.; Michaud, F.; Schollhammer, P.; Talarmin, J.; Yaouanc, J.-J.; Pichon, R.; Kervarec, N. Organometallics 2007, 26, 2042.(c) Tye, J. W.; Lee, J.; Wang, H.-W.; Mejia-Rodriguez, R.; Reibenspies, J. H.; Hall, M. B.; Darensbourg, M. Y. Inorg. Chem. 2005, 44, 5550.

    14. [14]

      (a) Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Chem. Rev. 2016, doi:10.1021/acs.chemrev.6b0-0180.(b)Rauchfuss,T.B.Acc.Chem.Res.2015,48,2107.(c)Lubitz,W.;Ogata,H.;Rüdiger,O.;Reijerse,E.Chem.Rev.2014,114,4081.(d)Wang,N.;Wang,M.;Chen,L.;Sun,L.C.DaltonTrans.2013,42,12059.(e)Wang,M.;Sun,L.ChemSusChem2010,3,551.

    15. [15]

      (a) Tard, C. D.; Pickett, C. J. Chem. Rev. 2009, 109, 2245.(b) McGlynn, S. E.; Mulder, D. W.; Shepard, E. M.; Broderick, J. B.; Peters, J. W. Dalton Trans. 2009, 4274.(c) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100.(d) De Lacey, A. L.; Fernández, V. M.; Rousset, M.; Cammack, R. Chem. Rev. 2007, 107, 4304.

    16. [16]

    17. [17]

      Liu, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 2007, 129, 7008.  doi: 10.1021/ja071851a

    18. [18]

      Justice, A. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 2007, 46, 6152.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      (a) Wang, N.; Wang, M.; Wang, Y.; Zheng, D.; Han, H.; Ahlquist, M. S. G.; Sun, L. J. Am. Chem. Soc. 2013, 135, 13688.(b) Mulder, D. W.; Ratzloff, M. W.; Shepard, E. M.; Byer, A. S.; Noone, S. M.; Peters, J. W.; Broderick, J. B.; King, P. W. J. Am. Chem. Soc. 2013, 135, 6921.(c) Camara, J. M.; Rauchfuss, T. B. Nat. Chem. 2012, 4, 26.(d) Camara, J. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 2011, 133, 8098.

    20. [20]

      (a) Barton, B. E.; Zampella, G.; Justice, A. K.; De Gioia, L.; Rauchfuss, T. B.; Wilson, S. R. Dalton Trans. 2010, 39, 3011.(b) Carroll, M. E.; Barton, B. E.; Rauchfuss, T. B.; Carroll, P. J. J. Am. Chem. Soc. 2012, 134, 1884.

    21. [21]

      Barton, B. E.; Rauchfuss, T. B. Inorg. Chem. 2008, 47, 2261.  doi: 10.1021/ic800030y

    22. [22]

      Tye, J. W.; Darensbourg, M. Y.; Hall, M. B. Inorg. Chem. 2006, 45, 1552.  doi: 10.1021/ic051231f

    23. [23]

      Wang, W.; Rauchfuss, T. B.; Moore, C. E.; Rheingold, A. L.; De Gioia, L.; Zampella, G. Chem. Eur. J. 2013, 19, 15476.  doi: 10.1002/chem.v19.46

    24. [24]

      Munery, S.; Capon, J.-F.; De Gioia, L.; Elleouet, C.; Greco, C.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J.; Zampella, G. Chem. Eur. J. 2013, 19, 15458.  doi: 10.1002/chem.v19.46

    25. [25]

      (a) Harb, M. K.; Apfel, U.-P.; Kübel, J.; Görls, H.; Felton, G. A. N.; Sakamoto, T.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-khateeb, M.; Weigand, W. Organometallics 2009, 28, 6666.(b) Harb, M. K.; Niksch, T.; Windhager, J.; Görls, H.; Holze, R.; Lockett, L. T.; Okumura, N.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-khateeb, M.; Weigand, W. Organometallics 2009, 28, 1039.(c) Harb, M. K.; Windhager, J.; Daraosheh, A.; Gorls, H.; Lockett, L. T.; Okumura, N.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-Khateeb, M.; Weigand, W. Eur. J. Inorg. Chem. 2009, 3414.

    26. [26]

      (a) Das, P.; Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J.; Muir, K. W. Inorg. Chem. 2004, 43, 8203.(b) Zaffaroni, R.; Rauchfuss, T. B.; Fuller, A.; De Gioia, L.; Zampella, G. Organometallics 2013, 32, 232.(c) Gimbert-Surinach, C.; Bhadbhade, M.; Colbran, S. B. Organometallics 2012, 31, 3480.

    27. [27]

      Volkers, P.; Rauchfuss, T. B. J. Inorg. Biochem. 2007, 101, 1748.  doi: 10.1016/j.jinorgbio.2007.05.005

    28. [28]

      (a) Carroll, M. E.; Chen, J.; Gray, D. E.; Lansing, J. C.; Rauchfuss, T. B.; Schilter, D.; Volkers, P. I.; Wilson, S. R. Organometallics 2014, 33, 858.(b) Justice, A. K.; Zampella, G.; De Gioia, L.; Rauchfuss, T. B.; van der Vlugt, J. I.; Wilson, S. R. Inorg. Chem. 2007, 46, 1655.

    29. [29]

      Adam, F. I.; Hogarth, G.; Kabir, S. E.; Richards, I. C. R. Chim. 2008, 11, 890.  doi: 10.1016/j.crci.2008.03.003

    30. [30]

      van Loevezijn, A.; Venhorst, J.; Iwema Bakker, W. I.; de Korte, C. G.; de Looff, W.; Verhoog, S.; van Wees, J.-W.; van Hoeve, M.; van de Woestijne, R. P.; van der Neut, M. A. W.; Borst, A. J. M.; van Dongen, M. J. P.; de Bruin, N. M. W. J.; Keizer, H. G.; Kruse, C. G. J. Med. Chem. 2011, 54, 7030.  doi: 10.1021/jm200466r

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    15. [15]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

Metrics
  • PDF Downloads(4)
  • Abstract views(1058)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return