Citation: Huang Guojia, Chen Zhigang, Li Maodong, Yang Bo, Xin Mingliang, Li Shiping, Yin Zongjie. Surface Functional Modification of Graphene and Graphene Oxide[J]. Acta Chimica Sinica, ;2016, 74(10): 789-799. doi: 10.6023/A16070360
-
Graphene and graphene oxide have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. Pristine graphene is desirable for applications that require a high electrical conductivity, while many other applications require modified or functionalized forms such as graphene oxide due to its good dispersibility in various solvents. Surface functional modification of graphene and graphene oxide is of crucial importance for their broad applications. Functionalization of graphene enables this material to be processed by solvent assisted techniques, such as layer-by-layer assembly, filtration. It also prevents the agglomeration of single layer graphene and maintains the inherent properties. Structurally modifying graphene and graphene oxide through chemical functionalization reveals the numerous possibilities for tuning its structure. Several chemical and physical functionalization methods have been explored to improve the stabilization and modification of graphene. This review focuses on the surface functional modification of graphene and graphene oxide. The preparation method, basic structure and properties of graphene and graphene oxide were briefly described firstly. On the one hand, in the light of bonding characteristic, the surface functionalization of graphene and graphene oxide is divided into non-covalent binding modification, covalent binding modification and elemental doping. On the other hand, non-covalent functionalization contains four categories: π-π stacking, hydrogen bonding, ionic bonding effect and electrostatic interaction. Meanwhile, covalently functionalization includes four categories: carbon skeleton modification, hydroxy modification, carboxy modification and epoxy group modification due to the reactive functional groups. Doping functionalization consists of N, B, P and other different elements. According to the classification of surface structure characteristics, selected typical case has described the functional modification process in detail. The properties and application prospects of the modified products are also summarized. Finally, current challenges and future research directions are also presented in terms of surface functional modification for graphene and graphene oxide.
-
Keywords:
- graphene,
- graphene oxide,
- functionalization,
- modification
-
-
[1]
[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. Science 2004, 306, 666.
-
[2]
[2] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
-
[3]
[3] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.
-
[4]
[4] Orlita, M.; Faugeras, C.; Plochocka, P.; Neugebauer, P.; Martinez, G.; Maude, D. K.; Barra, A. L.; Sprinkle, M.; Berger, C.; de Heer, W. A.; Potemski, M. Phys. Rev. Lett. 2008, 101, 267601.
-
[5]
[5] Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620. (孔丽娟, 周晓燕, 范赛英, 李在均, 顾志国, 化学学报, 2016, 74, 620.)
-
[6]
[6] Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.
-
[7]
[7] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.
-
[8]
[8] Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30.
-
[9]
[9] Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Prog. Polym. Sci. 2010, 35, 1350.
-
[10]
[10] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
-
[11]
[11] Dai, J.; Lang, M. Acta Chim. Sinica 2012, 70(11), 1237. (戴静, 郎美东, 化学学报, 2012, 70(11), 1237.)
-
[12]
[12] Zhang, S. Acta Chim. Sinica 2012, 70(12), 1394. (张树鹏, 化学学报, 2012, 70(12), 1394.)
-
[13]
[13] Heo, J.; Oh, J. W.; Ahn, H. I.; Lee, S. B.; Cho, S. E.; Kim, M. R.; Lee, J. K.; Kim, N. Synth. Met. 2010, 160, 2143.
-
[14]
[14] Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. Adv. Mater. 2011, 23, 776.
-
[15]
[15] Xie, W.-J.; Fu, Y.-Y.; Ma, H.; Zhang, M.; Fan, L.-Z. Acta Chim. Sinica 2012, 70, 2169. (谢文菁, 傅英懿, 马红, 张沫, 范楼珍, 化学学报, 2012, 70, 2169.)
-
[16]
[16] Shi, X.; Gu, W.; Peng, W.; Li, B.; Chen, N.; Zhao, K.; Xian, Y. ACS Appl. Mater. Interf. 2014, 6, 2568.
-
[17]
[17] Ba, H.; Podila, S.; Liu, Y.; Mua, X.; Nhuta, J. M.; Papaefthimiou, V.; Zafeiratos, S.; Granger, P.; Huu, C. Catal. Today 2015, 249, 167.
-
[18]
[18] Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 2011, 133, 7296.
-
[19]
[19] Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X.; Zhong, H. Biomaterials 2011, 32, 8555.
-
[20]
[20] Weaver, C.; Larosa, J.; Luo, X.; Cui, X. ACS Nano 2014, 8, 1834.
-
[21]
[21] Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Small 2010, 6, 537.
-
[22]
[22] Dryer, D.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 229.
-
[23]
[23] Park, S.; Hu, Y.; Hwang, J. O.; Lee, E. S.; Casabianca, L. B.; Cai, W.; Potts, J. R.; Ha, H. W.; Chen, S.; Oh, J.; Kim, S. O.; Kim, Y.; Ishii, Y.; Ruoff, R. Nat. Commun. 2012, 3, 638.
-
[24]
[24] Hunter, C. A.; Lawson, K. R.; Perkins, C.; Urch, C. J. J. Chem. Soc. Perkin Trans. 2001, 2, 651.
-
[25]
[25] Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116(9), 5464.
-
[26]
[26] Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Prog. Mater. Sci. 2012, 57(7), 1061.
-
[27]
[27] Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C. Chem. Rev. 2012, 112(11), 6156.
-
[28]
[28] Bai, H.; Li, C.; Shi, G. Adv. Mater. 2011, 23, 1089.
-
[29]
[29] Zhou, L.; Zhang, L.; Liao, L.; Yang, M.; Xie, Q.; Peng, H.; Liu, Z.; Liu, Z. Acta Chim. Sinica 2014, 72(3), 289. (周琳, 张黎明, 廖磊, 杨明媚, 谢芹, 彭海琳, 刘志荣, 刘忠范, 化学学报, 2014, 72(3), 289.)
-
[30]
[30] Yu, X.; Sheng, K.; Chen, J.; Li, C.; Shi, G. Acta Chim. Sinica 2014, 72, 319. (于小雯, 盛凯旋, 陈骥, 李春, 石高全, 化学学报, 2014, 72, 319.)
-
[31]
[31] Lei, Z.; Zhang, J.; Zhang, L. L.; Kumar, N. A.; Zhao, X. S. Energy Environ. Sci. 2016, 9(6), 1891.
-
[32]
[32] Wen, L.; Liu, C.; Song, R.; Luo, H.; Shi, Y.; Li, F.; Cheng, H. Acta Chim. Sinica 2014, 72(3), 333. (闻雷, 刘成名, 宋仁升, 罗洪泽, 石颖, 李峰, 成会明, 化学学报, 2014, 72(3), 333.)
-
[33]
[33] Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Chem. Mater. 2006, 18, 2740.
-
[34]
[34] Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Nano Lett. 2009, 9, 1058.
-
[35]
[35] Tang, C.; Wu, J.; Wan, Y.; Zhang, Z.; Kang, J.; Xiang, Y.; Zhu, W. Acta Chim. Sinica 2015, 73, 1189. (唐春梅, 邬佳仁, 万一民, 张振俊, 康静, 向圆圆, 朱卫华, 化学学报, 2015, 73, 1189.)
-
[36]
[36] Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; Geim, A. K. Nano Lett. 2011, 11, 2396.
-
[37]
[37] Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. Nat. Chem. 2009, 1(5), 403.
-
[38]
[38] Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Nano Lett. 2007, 7(11), 3499.
-
[39]
[39] Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Nat. Commun. 2010, 1(6), 73.
-
[40]
[40] Liu, L.; Zhang, J.; Zhao, J.; Liu, F. Nanoscale 2012, 4(19), 5910.
-
[41]
[41] Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. ACS Nano 2010, 4(11), 6557.
-
[42]
[42] Gómez-Navarro, C.; Burghard, M.; Kern, K. Nano Lett. 2008, 8(7), 2045.
-
[43]
[43] Lin, Y.; Guo, X. Acta Chim. Sinica 2014, 72, 277. (林源为, 郭雪峰, 化学学报, 2014, 72, 277.)
-
[44]
[44] Guo, Y.; Li, W.; Zheng, M.; Huang, Y. Acta Chim. Sinica 2014, 72, 713. (郭颖, 李午戊, 郑敏燕, 黄怡, 化学学报, 2014, 72, 713.)
-
[45]
[45] Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Chem. Rev. 2012, 112, 6156.
-
[46]
[46] Kozlov, S. M.; Vines, F.; Gorling, A. Carbon 2012, 50, 2482.
-
[47]
[47] Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc. 2008, 130(18), 5856.
-
[48]
[48] Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G. Chem. Commun. 2009, 13, 1667.
-
[49]
[49] Sheng, K.; Xu, Y.; Li, C.; Shi, G. New Carbon Mater. 2011, 26(1), 9.
-
[50]
[50] Hou, C.; Huang, T.; Wang, H.; Yu, H.; Zhang, Q.; Li, Y. Sci. Rep. 2013, 3, 3138.
-
[51]
[51] Lee, D. W.; Kim, T.; Lee, M. Chem. Commun. 2011, 47, 8259.
-
[52]
[52] Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Mullen, K. Adv. Mater. 2009, 21, 3191.
-
[53]
[53] Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. J. Phys. Chem.C 2008, 112(45), 17554.
-
[54]
[54] Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Adv. Mater. 2009, 21, 3159.
-
[55]
[55] Chang, H. X.; Wang, G. F.; Yang, A.; Tao, X. M.; Liu, X. Q.; Shen, Y. D.; Zheng, Z. J. Adv. Funct. Mater. 2010, 20, 2893.
-
[56]
[56] Valles, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Penicaud, A. J. Am. Chem. Soc. 2008, 130, 15802.
-
[57]
[57] Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4(4), 1963.
-
[58]
[58] Li, D.; Muller, M.; GiljE, S.; Kaner, R.; Wallace, G. Nat. Nanotech. 2008, 3, 101.
-
[59]
[59] Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998, 102, 4477.
-
[60]
[60] Chua, C. K.; Pumera, K. Chem. Soc. Rev. 2013, 42, 3222.
-
[61]
[61] Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Ko-synkin, D. V.; Tour, J. M. ACS Nano 2010, 4(4), 1949.
-
[62]
[62] Xia, Z.; Leonardi, F.; Gobbi, M.; Liu, Y.; Bellani, V.; Liscio, A.; Kovtun, A.; Li, R.; Feng, X.; Orgiu, E.; Samori, P.; Treossi, E.; Palermo, V. ACS Nano 2016, 10(7), 7125.
-
[63]
[63] Bouša, D.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Šturala, J.; Pumera, M.; Sofer, Z. Chemistry 2015, 21(49), 17728.
-
[64]
[64] Farquhar, A. K.; Dykstra, H. M.; Waterland, M. R.; Downard, A. J.; Brooksby, P. A. J. Phys. Chem. C 2016, 120(14), 7543.
-
[65]
[65] Jin, Z.; Mcnicholas, T. P.; Shih, C. J.; Wang, Q. H.; Paulus, G. L. C.; Hilmer, A. J.; Shimizu, S.; Strano, M. S. Chem. Mater. 2011, 23(14), 3362.
-
[66]
[66] Lu, Y. Z.; Jiang, Y. Y.; Wei, W. T.; Wu, H. B.; Liu, M. M.; Niu, L.; Chen, W. J. Mater. Chem. 2012, 22(7), 2929.
-
[67]
[67] Yuan, J. C.; Chen, G. H.; Weng, W. G.; Xu, Y. Z. J. Mater. Chem. 2012, 22, 7929.
-
[68]
[68] Lai, C.; Sun, Y.; Yang, H.; Zhang, X.; Lin, B. Acta Chim. Sinica 2013, 71(9), 1201. (来常伟, 孙莹, 杨洪, 张雪勤, 林保平, 化学学报, 2013, 71(9), 1201.)
-
[69]
[69] Yang, X.; Ma, L.; Wang, S.; Li, Y.; Tu, Y. Polymer 2011, 52(14), 3046.
-
[70]
[70] Wang, Z.; Ge, Z.; Zheng, X.; Chen, N.; Peng, C.; Fan, C.; Huang, Q. Nanoscale 2011, 4(2), 394.
-
[71]
[71] Nanda, S. S.; Papaefthymiou, G. C.; Dong, K. Y. Crit. Rev. Solid State 2015, 40(5), 1.
-
[72]
[72] Lonkar, S. P.; Deshmukh, Y. S.; Abdala, A. A. Nano Res. 2014, 8(4), 1.
-
[73]
[73] Cao, Y.; Lai, Z.; Feng, J.; Wu, P. J. Mater. Chem. 2011, 21(25), 9271.
-
[74]
[74] Mohanty, N.; Berry, V. Nano Lett. 2008, 8(12), 4469.
-
[75]
[75] Liu, J.; Liu, Z.; Barrow, C. J.; Yang, W. Anal. Chim. Acta 2015, 859, 1.
-
[76]
[76] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130(33), 10876.
-
[77]
[77] Yang, H.; Kwon, Y.; Kwon, T.; Lee, H.; Kim, B. J. Small 2012, 8, 3161.
-
[78]
[78] Zhu, D. Y.; Xiao, Z. Y.; Liu, X. M. Int. J. Hydrogen Energy 2015, 40, 5081.
-
[79]
[79] Wu, Q.; Sun, Y.; Bai, H.; Shi, G. Phys. Chem. Chem. Phys., 2011, 13, 11193.
-
[80]
[80] Zhou, H.; Wang, X.; Yu, P.; Chen, X.; Mao, L. Analyst 2011, 137(2), 305.
-
[81]
[81] Collins, W. R.; Schmois, E.; Swager, T. M. Chem. Commun. 2011, 47(31), 8790.
-
[82]
[82] Wang, X.; Shi, G. Phys. Chem. Chem. Phys. 2015, 17, 28484.
-
[83]
[83] Yao, B.; Li, C.; Ma, J.; Shi, G. Phys. Chem. Chem. Phys. 2015, 17, 19538.
-
[84]
[84] Zhang, Y.; Liang, Y.; Zhou, J. Acta Chim. Sinica 2014, 72, 367. (张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)
-
[85]
[85] Duan, X.; Indrawirawan, S.; Sun, H.; Wang, S. Catal. Today 2015, 249, 184.
-
[86]
[86] Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131(43), 15939.
-
[87]
[87] Jafari, A.; Ghoranneviss, M.; Elahi, A. S. J. Cryst. Growth 2016, 438, 70.
-
[88]
[88] Xie, Z.; Zuo, X.; Zhang, G.; Li, Z.; Wang, C. Chem. Phys. Lett. 2016, 657, 18.
-
[1]
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[5]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[6]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[7]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[8]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[9]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[10]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[11]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[12]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[13]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[14]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[15]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[16]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[17]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[18]
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
-
[19]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[20]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[1]
Metrics
- PDF Downloads(14)
- Abstract views(1645)
- HTML views(385)