Citation: Cao Chan, Liao Dongfang, Ying Yilun, Long Yitao. Detection of Single Oligonucleotide by an Aerolysin Nanopore[J]. Acta Chimica Sinica, ;2016, 74(9): 734-737. doi: 10.6023/A16070352 shu

Detection of Single Oligonucleotide by an Aerolysin Nanopore

  • Received Date: 19 July 2016

    Fund Project: the Program of Introducing Talents of Discipline to Universities B16017the National Natural Science Foundation of China 21421004the National Natural Science Foundation of China 21327807

Figures(3)

  • Since the nanopore single-molecule technology has been proposed, it remains a big challenge to generate a sensitive and stable nano-scale pore. In order to achieve this goal, membrane proteins, solid-state nanopore and other materials such as DNA origami have been involved to fabricate a suitable nanopore. Compared to the solid-state nanopores, biological nanopores perform a higher resolution for single molecule analysis. Therefore, the investigation of finding new biological nanopores is very important to realize the discrimination of single oligonucleotide. Aerolysin biological nanopore has been applied for the study of oligosaccharides, peptides, protein unfolding and small organic molecules so far. Here, we report that Aerolysin could be utilized for oligonucleotide analysis. The data demonstrated that Aerolysin nanopore has a high resolution both for current and time compared with other most widely used wild-type biological nanopores, such as α-hemolysin and Mycobacterium smegmatis porin A (MspA). It may be because of its narrow diameter and positive charged amino acids in the lumen. One Aerolysin pore generates a 50 pA constant ion current in 1 mol/L KCl solution, as a three nucleotides length oligonucleotides (5'-AGG-3') traversing through nanopore could induce nearly 40% current blockage. In comparison, no current blockage signals were observed when 5'-AGG-3' driven from either cis or trans side of the α-hemolysin nanopore. Furthermore, the statistical analysis of duration time of single oligonucleotide through Aerolysin indicates a relationship scale with applied voltage, as the voltage increased from 80 to 160 mV, the duration gradually decreased. Although Aerolysin nanopore has been investigated for nearly 10 years, its ability to detect oligonucleotide was not highlighted. Our findings explored high sensing capabilities of Aerolysin nanopore in the analysis of single oligonucleotide, and extended its application to single-molecule nucleic acid analysis. Aerolysin is a promising candidate for the DNA sensing, DNA damage detection, microRNA analysis and other single molecule investigations.
  • 加载中
    1. [1]

      Kasianowicz J. J., Brandin E., Branton D., Deamer D. W. Proc. Natl. Acad. Sci. U. S. A. 1996, 93(24), 13770.  doi: 10.1073/pnas.93.24.13770

    2. [2]

      Ying Y.-L., Zhang X., Liu Y., Xue M.-Z., Li H.-L., Long Y.-T. Acta Chim. Sinica, 2013, 71:44 (in Chinese).  doi: 10.6023/A12110982

    3. [3]

      Wang Y., Yu X.-F., Liu Y.-Y., Xie X., Cheng X.-L., Huang S.-M., Wang Z...-M. Acta Chim. Sinica, 2014, 72:378 (in Chinese).  doi: 10.6023/A13121208

    4. [4]

      Ying Y.-L., Cao C., Long Y.-T. Analyst, 2014, 139:3826.  doi: 10.1039/C4AN00706A

    5. [5]

      Branton D., Deamer D. W., Marziali A., Bayley H., Benner S. A., Butler T., Di Ventra M., Garaj S., Hibbs A., Huang X., Jovanovich S. B., Krstic P. S., Lindsay S., Ling X. S., Mastrangelo C. H., Meller A., Oliver J. S., Pershin Y. V., Ramsey J. M., Riehn R., Soni G. V., Tabard-Cossa V., Wanunu M., Wiggin M., Schloss J. A...Nat. Biotechnol., 2008, 26:1146.  doi: 10.1038/nbt.1495

    6. [6]

      Clarke J., Wu H.-C., Jayasinghe L., Patel A., Reid S., Bayley H...Nat. Nanotechnol., 2009, 4:265.  doi: 10.1038/nnano.2009.12

    7. [7]

      Kumar S., Tao C., Chien M., Hellner B., Balijepalli A., Robertson J. W., Li Z., Russo J. J., Reiner J. E., Kasianowicz J. J., Ju J...Sci. Rep., 2012, 2:684.

    8. [8]

      Stoddart D., Heron A. J., Mikhailova E., Maglia G., Bayley H...Proc. Natl. Acad. Sci. U. S. A., 2009, 106:7702; (b) Manrao E. A., Derrington I. M., Pavlenok M., Niederweis M., Gundlach J. H...PLoS ONE 2011, 6, e25723.

    9. [9]

      Wang H.-Y., Li Y., Qin L.-X., Heyman A., Shoseyov O., Willner I., Long Y.-T., Tian H...Chem. Commun., 2013, 49:1741; (b) Butler T. Z., Pavlenok M., Derrington I. M., Niederweis M., Gundlach J. H...Proc. Natl. Acad. Sci. U. S. A., 2008, 105:20647.

    10. [10]

      Manrao E. A., Derrington I. M., Laszlo A. H., Langford K. W., Hopper M. K., Gillgren N., Pavlenok M., Niederweis M., Gundlach J. H...Nat. Biotechnol., 2012, 30:349.  doi: 10.1038/nbt.2171

    11. [11]

      Parker M. W., Buckley J. T., Postma J. P. M., Tucker A. D., Leonard K., Pattus F., Tsernoglou D. Nature, 1994, 367:292.  doi: 10.1038/367292a0

    12. [12]

      Stefureac R., Long Y.-T., Kraatz H.-B., Howard P., Lee J. S. Biochemistry, 2006, 45:9172.

    13. [13]

      Pastoriza-Gallego M., Rabah L., Gibrat G., Thiebot B., van der Goot F. G., Auvray L., Betton J. M., Pelta J. J. J. Am. Chem. Soc., 2011, 133:2923.  doi: 10.1021/ja1073245

    14. [14]

      Baaken G., Halimeh I., Bacri L., Pelta J., Oukhaled A., Behrends J. C. ACS Nano, 2015, 9:6443.  doi: 10.1021/acsnano.5b02096

    15. [15]

      Fennouri A., Przybylski C., Pastoriza-Gallego M., Bacri L., Auvray L., Daniel R. ACS Nano, 2012, 6:9672.  doi: 10.1021/nn3031047

    16. [16]

      Fennouri A., Daniel R., Pastoriza-Gallego M., Auvray L., Pelta J., Bacri L...Anal. Chem., 2013, 85:8488; (b) Cressiot B., Braselmann E., Oukhaled A., Elcock A. H., Pelta J., Clark P. L...ACS Nano, 2015, 9:9050.

    17. [17]

      Degiacomi M. T., Iacovache I., Pernot L., Chami M., Kudryashev M., Stahlberg H., van der Goot F. G., Peraro M. D...Nat. Chem. Biol., 2013, 9:623.  doi: 10.1038/nchembio.1312

    18. [18]

      Chan C., Ying Y.-L., Hu Z.-L., Liao D.-F., Tian H., Long Y...-T. Nat. Nanotechnol., 2016, 11:713.  doi: 10.1038/nnano.2016.66

    19. [19]

      Cao C., Ying Y.-L., Gu Z., Long Y...-T. Anal. Chem., 2014, 86:11946.  doi: 10.1021/ac504233s

  • 加载中
    1. [1]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    2. [2]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    3. [3]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    7. [7]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    8. [8]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    20. [20]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

Metrics
  • PDF Downloads(0)
  • Abstract views(1468)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return