Citation: Hu Cong, Li Li, Yang Na, Zhang Ziheng, Xie Shengming, Yuan Liming. Chiral Metal-Organic Framework [Cu(S-mal)(bpy)]n Used for Separation of Racemates in High Performance Liquid Chromatography[J]. Acta Chimica Sinica, ;2016, 74(10): 819-824. doi: 10.6023/A16070349 shu

Chiral Metal-Organic Framework [Cu(S-mal)(bpy)]n Used for Separation of Racemates in High Performance Liquid Chromatography

  • Corresponding author: Xie Shengming,  Yuan Liming, 
  • Received Date: 16 July 2016

    Fund Project:

  • Chiral metal-organic framework materials, as a new type of porous materials, have attracted much attention in the field of chiral separation. In this paper, a homochiral MOF [Cu(S-mal)(bpy)]n with 3D chiral networks was synthesized by the reaction of ligands (S-malic acid and 4,4'-bipyridine) with copper acetate via a solvothermal method. A packed chiral column for high performance liquid chromatography was fabricated using [Cu(S-mal)(bpy)]n as stationary phase. Before the packing, the MOF crystals was crushed in ethanol applying soft pressure and then the MOF with suitable particle size (5~10 m) was obtained via solvent suspension. A 4.2 g mass of prepared MOF was suspended in a mixture of hexane and isopropanol. In order to control the packing quality, the suspension of MOF was packed into a stainless steel empty column (25 cm long×4.6 mm i.d.) under 40 MPa using hexane/isopropanol (9:1, V/V) as the slurry solvent according to a conventional high pressure slurry packing procedure. To investigate the chiral recognition ability of this stationary phase, a series of racemic compounds were separated on the chiral MOF column using different ratio of n-hexane/isopropanol as mobile phase. The results showed that the chiral column exhibited good resolving ability towards 17 racemates, including alcohols, ketones, flavonoids, phenols and amines. For instance, the resolution value of 1-(1-naphthyl)ethanol could reach 4.5. Compared with three kinds of homochiral MOFs columns previously reported by our group, this column showed better chiral recognition ability and higher resolution toward racemates, and has a good complementary for chiral separation. The [Cu(S-mal)(bpy)]n possesses cavities with average dimensions (5 Å×5 Å×6 Å), which were interconnected by narrow windows with diameter ≤3 Å. Therefore, the chiral recognition mostly depends on the surface of the MOF crystal in which the steric fit between the chiral networks and conformation of the solute molecule is the main interactive force. Besides, many other interactions such as the hydro-gen-bondings, dispersion forces, dipole-dipole interaction, and π-π interactions which come from the solutes, chiral stationary phase and the mobile phase may also play some role. The reproducibility and stability of the chiral column were evaluated. The results showed that the chiral column showed good reproducibility and stability for enantioseparation.
  • 加载中
    1. [1]

      [1] Wei, W. Y.; Fang, J.; Kong, H. N.; Han, J. Y.; Chang, H. Y. Prog. Chem. 2005, 17, 1110(in Chinese). (魏文英, 方键, 孔海宁, 韩金玉, 常贺英, 化学进展, 2005, 17, 1110.)

    2. [2]

      [2] Mu, C. Z.; Xu, F.; Lei, W. Prog. Chem. 2007, 19, 1345(in Chinese). (穆翠枝, 徐峰, 雷威, 化学进展, 2007, 19, 1345.)

    3. [3]

      [3] Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. J. Mater. Chem. 2006, 16, 626.

    4. [4]

      [4] Qi, X. Y.; Li, X. J.; Bai, Y.; Liu, H. W. Chin. J. Chromatogr. 2016, 34, 10(in Chinese). (祁晓月, 李先江, 白玉, 刘虎威, 色谱, 2016, 34, 10.)

    5. [5]

      [5] Xie, S. M.; Yuan, L. M. Prog. Chem. 2013, 25, 1763(in Chinese). (谢生明, 袁黎明, 化学进展, 2013, 25, 1763.)

    6. [6]

      [6] Li, X. J.; He, C. F.; Huang, B.; Lin, Z. Y. Chem. Ind. Eng. Prog. 2016, 35, 586(in Chinese). (李小娟, 何长发, 黄斌, 林振宇, 刘以凡, 林春香, 化工进展, 2016, 35, 586.)

    7. [7]

      [7] Pham, M. H.; Vuong, G. T.; Fontaine, F. G. Cryst. Growth Des. 2011, 12, 1008.

    8. [8]

      [8] Lee, J. Y.; Pan, L.; Huang, X. Y. Adv. Funct. Mater. 2011, 21, 993.

    9. [9]

      [9] Xiang, Z. H.; Hu, Z.; Cao, D. P. Angew. Chem., Int. Ed. 201l, 50, 491.

    10. [10]

      [10] Bao, Z.; Yu, L.; Ren, Q. J. Coll. Inter. Sci. 2011, 353, 549.

    11. [11]

      [11] Kim, H.; Park, J.; Jung, Y. Phys. Chem. Chem. Phys. 2013, 15, 19644.

    12. [12]

      [12] Wang, B.; Lv, X. L.; Feng, D. W.; Xie, L. H.; Zhang, J.; Li, M.; Xie, Y. B.; Li, J. R.; Zhou, H. C. J. Am. Chem. Soc. 2016, 138, 6204.

    13. [13]

      [13] Jia, J. T.; Wang, L.; Zhao, Q.; Sun, F. X.; Zhu, G. S. Acta Chim. Sinica 2013, 71, 1492(in Chinese). (贾江涛, 王蕾, 赵晴, 孙福兴, 朱广山, 化学学报, 2013, 71, 1492.)

    14. [14]

      [14] Xu, J.; Shimakoshi, H.; Hisaeda, Y. J. Organomet. Chem. 2015, 782, 89.

    15. [15]

      [15] Karimi, Z.; Morsali, A. J. Mater Chem. A 2013, 1, 3047.

    16. [16]

      [16] Guo, R. M.; Bai, J. Q.; Zhang, H.; Xie, Y. B.; Li, J. R. Prog. Chem. 2016, 28, 232(in Chinese). (郭瑞梅, 白金泉, 张恒, 谢亚勃, 李建荣, 化学进展, 2016, 28, 232.)

    17. [17]

      [17] Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113(in Chinese). (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)

    18. [18]

      [18] Qian, J. J.; Qiu, L. G.; Wang, Y. M. Dalton Trans. 2014, 43, 3978.

    19. [19]

      [19] Nickerl, G.; Senkovska, I.; Kaskel, S. Chem. Commun. 2015, 51, 2280.

    20. [20]

      [20] Ezuhara, T.; Endo, K.; Aoyama, Y. J. Am. Chem. Soc. 1999, 121, 3279.

    21. [21]

      [21] Dai, R. J.; Tong, B.; Tang, L.; Deng, Y. L.; Fu, R. N. Acta Chim. Sinica 2006, 64, 1248(in Chinese). (戴荣继, 佟斌, 唐力, 邓玉林, 傅若农, 化学学报, 2006, 64, 1248.)

    22. [22]

      [22] Gu, Z. Y.; Jiang, D. Q.; Wang, H. F.; Cui, X. Y.; Yan, X. P. J. Phys. Chem. C 2010, 114, 311.

    23. [23]

      [23] Gu, Z. Y.; Yang, C. X.; Chang, N.; Yan, X. P. Acc. Chem. Res. 2012, 45, 734.

    24. [24]

      [24] Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869.

    25. [25]

      [25] Gu, Z. Y.; Yan, X. P. Angew. Chem., Int. Ed. 2010, 49, 1477.

    26. [26]

      [26] Zhao, W. W.; Zhang, C. Y.; Yan, Z. G.; Bai, L. P.; Wang, X. Y.; Huang, H. L.; Zhou, Y. Y.; Xie, Y. B.; Li, F. S.; Li, J. R. J. Chromatogr. A 2014, 1370, 121.

    27. [27]

      [27] Zhu, Z. J.; Wang, Q. Q.; Kang, J. W. Acta Chim. Sinica 2008, 66, 1845(in Chinese). (朱智甲, 王倩倩, 康经武, 化学学报, 2008, 66, 1845.)

    28. [28]

      [28] Ezuhara, T.; Endo, K.; Aoyama, Y. J. Am. Chem. Soc. 1999, 121, 3279.

    29. [29]

      [29] Nuzhdin, A. L.; Dybtsev, D. N.; Bryliakov, K. P. J. Am. Chem. Soc. 2007, 129, 12958.

    30. [30]

      [30] Padmanaban, M.; Müller, P.; Lieder, C.; Gedrich, K.; Grunker, R.; Bon, V.; Senkovska, I.; Baumgartner, S.; Opelt, S.; Paasch, S.; Brunner, E.; Glorius, F.; Klemm, E.; Kaskel, S. Chem. Commun. 2011, 47, 12089.

    31. [31]

      [31] Tanaka, K.; Muraoka, T.; Hirayama, D.; Ohnish, A. Chem. Commun. 2012, 48, 8577.

    32. [32]

      [32] Zhou, L. L.; Sun, W. Z.; Wang, J. Y.; Yuan, L. M. Acta Chim. Sinica 2008, 66, 2309(in Chinese). (周玲玲, 孙文卓, 王剑瑜, 袁黎明, 化学学报, 2008, 66, 2309.)

    33. [33]

      [33] Zhang, M.; Pu, Z. J.; Chen, X. L.; Gong, X. L.; Zhu, A. X.; Yuan, L. M. Chem. Commun. 2013, 49, 5201.

    34. [34]

      [34] Zhang, M.; Zhang, J. H.; Zhang, Y.; Wang, B. J.; Xie, S. M.; Yuan, L. M. J. Chromatogr. A 2014, 1325, 163.

    35. [35]

      [35] Kong, J.; Zhang, M.; Duan, A. H.; zhang, J. H.; Yang, R.; Yuan, L. M. J. Sep. Sci. 2015, 38, 556.

    36. [36]

      [36] Nong, R. Y.; Kong, J.; Zhang, J. H.; Chen, L.; Tang, B.; Xie, S. M.; Yuan, L. M. Chem. J. Chin. Univ. 2016, 37, 19(in Chinese). (农蕊瑜, 孔娇, 章俊辉, 陈玲, 汤波, 谢生明, 袁黎明, 高等学校化学学报, 2016, 37, 19.)

    37. [37]

      [37] Ma, S.; Shen, S.; Lee, H.; Eriksson, M.; Zeng, X.; Xu, J.; Fandrick, K.; Yee, N.; Senanayake, C.; Grinberg, N. J. Chromatogr. A 2009, 1216, 3784.

    38. [38]

      [38] Chankvetadze, B. J. Chromatogr. A 2012, 1269, 26.

    39. [39]

      [39] Zavakhina, M. S.; Samsonenko, D. G.; Virovets, A. V.; Dybtsev, D. N.; Fedin, V. P. J. Solid State Chem. 2014, 210, 125.

    40. [40]

      [40] Xie, S. M.; Zhang, X. H.; Zhang, Z. J.; Yuan, L. M. Anal. Lett. 2013, 46, 753.

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(8)
  • Abstract views(2017)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return