Citation: Wang Jun, Wu Yinglong, Sun Lihe, Zeng Fang, Wu Shuizhu. NIR AIE System for Tracking Release of Taurine and ROS Scavenging[J]. Acta Chimica Sinica, ;2016, 74(11): 910-916. doi: 10.6023/A16070342 shu

NIR AIE System for Tracking Release of Taurine and ROS Scavenging

  • Corresponding author: Wu Shuizhu, shzhwu@scut.edu.cn
  • Received Date: 14 July 2016

    Fund Project: National Key Basic Research Program of China 2013CB834702and the National Natural Science Foundation of China 21474031and the National Natural Science Foundation of China 21574044

Figures(5)

  • Fluorophores with aggregation-induced emission (AIE) feature are favorable tools for both chemical sensing and bioimaging. Inflammatory cells excessively express hydrolytic enzymes (esterase, protease and phosphatase) and are usually exposed to elevated levels of reactive oxygen species (ROS). Overexpression of ROS and the insufficient neutralization by antioxidants may give rise to the development of oxidative stress and chronic inflammation. Taurine (2-aminoethanesulfonic acid), as an effective antioxidant, can protect tissues from oxidative stress associated with various inflammatory diseases. Moreover, it has been recently reported that the incorporation of taurine can amazingly boost the cellular uptake for intracellular accumulation. Herein, we designed and synthesized a new near-infrared (NIR) AIE fluorophore DTPE. We anticipate that, the combination of the hydrophilic taurine with the NIR AIE fluorophore through an ester bond could be a remarkable method for extending the applications of AIE-active fluorophores e.g. as a trackable visualized therapeutic system featuring both imaging esterase-activated taurine release and ROS scavenging. Then we obtained the AIE probe system DTPE-Tau by incorporating taurine with the fluorophore through carbamate bond. The hydrophilic taurine moiety endows the system with enhanced water solubility and cellular uptake ability. The system is characterized by several advantages, such as large Stokes shift (225 nm), low cytotoxicity, and good photostability. The ester bond can be hydrolysed by the overexpressed esterase in inflammatory cells, thereby releasing a taurine moiety for ROS scavenging and in the meantime the AIE fluorophore moiety acts as a reporter for tracking esterase-activated taurine release. The enhancement of emission could serve as the reporting signal. The release rate is determined to be 75% for esterase at 0.05 mg/mL, calculated based on the fluorescence-intensity working curve. Also, the probe has been successfully utilized for tracking esterase-activated release of taurine and scavenging intracellular ROS in RAW264.7 cell line, which shows great potential for trackable visualized therapy.
  • 加载中
    1. [1]

      Li, P.; Xiao, H.; Tang, B. Chin. J. Chem. 2012, 30, 1992.  doi: 10.1002/cjoc.201200652

    2. [2]

      Xia, Z.; Shao, A.; Li, Q.; Zhu, S.; Zhu, W. Acta Chim. Sinica 2016, 74, 351.  doi: 10.6023/A16010001
       

    3. [3]

      Fan, J. L.; Xu, Q. L.; Zhu, H.; Peng, X. J. Chin. J. Org. Chem. 2014, 34(8), 1623.  doi: 10.6023/cjoc201403024

    4. [4]

      Chen, Y.; Qiu, T.; Zhao, W.; Fan, L. Polym. Chem. 2015, 6, 1576.  doi: 10.1039/C4PY01615G

    5. [5]

      Guo, S.; Zheng, F.; Zeng, F.; Wu, S. Z. Chinese J. Polym. Sci. 2016, 34, 830.  doi: 10.1007/s10118-016-1793-5

    6. [6]

      Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Z. Chem. Commun. 2013, 49, 403.  doi: 10.1039/C2CC37329G

    7. [7]

      Yu, C.; Wu, Y.; Zeng, F.; Li, X.; Shi, J.; Wu, S. Z. Biomacromolecules 2013, 14, 4507.  doi: 10.1021/bm401548u

    8. [8]

      Pan, L.; Luo, W.; Chen, M.; Liu, J.; Xu, L.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Z. Chin. J. Org. Chem. 2016, 36(6), 1316.  doi: 10.6023/cjoc201602020

    9. [9]

      Chan, J.; Dodani, S. C.; Chang, C. J. Nat. Chem. 2012, 4, 973.  doi: 10.1038/nchem.1500

    10. [10]

      Du, F. K.; Xu, J. S.; Zeng, F.; Wu, S. Z. Acta Chim. Sinica 2016, 74, 241.  doi: 10.6023/A15120780
       

    11. [11]

      Akdeniz, A.; Mosca, L.; Minami, T.; Anzenbacher Jr., P. Chem. Commun. 2015, 51, 5770.  doi: 10.1039/C5CC00376H

    12. [12]

      Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74(2), 165.  doi: 10.6023/A15090628
       

    13. [13]

      Shi, D. T.; Zhou, D.; Zang, Y.; Li, J.; Chen, G. R.; James, T. D.; He, X. P.; Tian, H. Chem. Commun. 2015, 51, 3653.  doi: 10.1039/C4CC09771H

    14. [14]

      Wu, B. Y.; Yan, X. P. Chem. Commun. 2015, 51, 3903.  doi: 10.1039/C5CC00286A

    15. [15]

      Zhang, Z.; Huang, J.; Dong, B.; Yuan, Q.; He, Y.; Wolfbeis, O. S. Nanoscale 2015, 7, 4149.  doi: 10.1039/C4NR07559E

    16. [16]

      Hou, X.; Yu, Q.; Zeng, F.; Ye, J.; Wu, S. J. Mater. Chem. B 2015, 3, 1042.

    17. [17]

      Ding, J.; Li, H.; Wang, C.; Yang, J.; Xie, Y.; Peng, Q.; Li, Q.; Li, Z. ACS Appl. Mater. Interfaces 2015, 7, 11369.  doi: 10.1021/acsami.5b01800

    18. [18]

      Xu, S. Y.; Sun, X.; Ge, H.; Arrowsmith, R. L.; Fossey, J. S.; Pascu, S. I.; Jiang, Y. B.; James, T. D. Org. Biomol. Chem. 2015, 13, 4143.  doi: 10.1039/C4OB02267J

    19. [19]

      Au-Yeung, H. Y.; Chan, J.; Chantarojsiri, T.; Chang, C. J. J. Am. Chem. Soc. 2013, 135, 15165.  doi: 10.1021/ja4072964

    20. [20]

      He, X. P.; Tian, H. Small 2016, 12, 144.  doi: 10.1002/smll.v12.2

    21. [21]

      Hettiarachchi, S. U.; Prasai, B.; McCarley, R. L. J. Am. Chem. Soc. 2014, 136, 7575.  doi: 10.1021/ja5030707

    22. [22]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    23. [23]

      Gao, M.; Hu, Q.; Feng, G.; Tang, B. Z.; Liu, B. J. Mater. Chem. B 2014, 2, 3438.  doi: 10.1039/c4tb00345d

    24. [24]

      Tang, X.; Bai, Q.; Peng, Q.; Gao, Y.; Li, J.; Liu, Y.; Yao, L.; Lu, P.; Yang, B.; Ma, Y. Chem. Mater. 2015, 27, 7050.  doi: 10.1021/acs.chemmater.5b02685

    25. [25]

      Liu, Z.; Xue, W.; Cai, Z.; Zhang, G.; Zhang, D. J. Mater. Chem. 2011, 21, 14487.  doi: 10.1039/c1jm12400e

    26. [26]

      Zhang, Y.; Kong, L.; Shi, J.; Tong, B.; Zhi, J.; Feng, X.; Dong, Y. Chin. J. Chem. 2015, 33, 701.  doi: 10.1002/cjoc.v33.7

    27. [27]

      Hu, F.; Zhang, G.; Zhan, C.; Zhang, W.; Yan, Y.; Zhao, Y.; Fu, H.; Zhang, D. Small 2015, 11, 1335.  doi: 10.1002/smll.201402051

    28. [28]

      Yang, J.; Huang, J.; Sun, N.; Peng, Q.; Li, Q.; Ma, D.; Li, Z. Chemistry 2015, 21, 6862.  doi: 10.1002/chem.201406190

    29. [29]

      Gao, Y.; Qu, Y.; Jiang, T.; Zhang, H.; He, N.; Li, B.; Wu, J.; Hua, J. J. Mater. Chem. C 2014, 2, 6353.

    30. [30]

      Ma, S.; Zhang, J.; Chen, J.; Wang, L.; Xu, B.; Tian, W. Chin. J. Chem. 2013, 31, 1418.  doi: 10.1002/cjoc.v31.11

    31. [31]

      Ewa, K.; Magdalena, P.; Barbara, L.; Malgorzata, O.; Pawel, M.; Wlodzimierz, M. Ann. Rheum. Dis. 2012, 71, 262.  doi: 10.1136/annrheumdis-2011-200123

    32. [32]

      Wu, Y.; Huang, S.; Zeng, F.; Wang, J.; Yu, C.; Huang, J.; Xie, H.; Wu, S. Chem. Commun. 2015, 51, 12791.  doi: 10.1039/C5CC04771D

    33. [33]

      Marcinkiewicz, J.; Kontny, E. Amino Acids 2014, 46, 7.  doi: 10.1007/s00726-012-1361-4

    34. [34]

      Hou, J. T.; Li, K.; Yang, J.; Yu, K. K.; Liao, Y. X.; Ran, Y. Z.; Liu, Y. H.; Zhou, X. D.; Yu, X. Q. Chem. Commun. 2015, 51, 6781.  doi: 10.1039/C5CC01217A

    35. [35]

      Long, L.; Wu, Y.; Wang, L.; Gong, A.; Hu, F.; Zhang, C. Chem. Commun. 2015, 51, 10435.  doi: 10.1039/C5CC03972J

    36. [36]

      Reja, S. I.; Bhalla, V.; Sharma, A.; Kaur, G.; Kumar, M. Chem. Commun. 2014, 50, 11911.  doi: 10.1039/C4CC05356G

    37. [37]

      Wu, Y.; Wang, J.; Zeng, F.; Huang, S.; Huang, J.; Xie, H.; Yu, C.; Wu, S. Z. ACS Appl. Mater. Interfaces 2016, 8, 1511.  doi: 10.1021/acsami.5b11023

    38. [38]

      Xiao, H.; Xin, K.; Dou, H.; Yin, G.; Quan, Y.; Wang, R. Chem. Commun. 2015, 51, 1442.  doi: 10.1039/C4CC07411D

    39. [39]

      Zhu, H.; Fan, J.; Wang, J.; Mu, H.; Peng, X. J. Am. Chem. Soc. 2014, 136, 12820.  doi: 10.1021/ja505988g

    40. [40]

      Sun, J. J.; Piao, S.; Cha, Y. N.; Kim, C. J. Clin. Biochem. Nutr. 2009, 45, 37.  doi: 10.3164/jcbn.08-262

    41. [41]

      Zhou, J.; Du, X.; Li, J.; Yamagata, N.; Xu, B. J. Am. Chem. Soc. 2015, 137, 10040.  doi: 10.1021/jacs.5b06181

    42. [42]

      Wang, J.; Wu, Y.; Zeng, F.; Huang, S.; Wu, S. Faraday Discuss. 2016, DOI:10. 1039/C6FD00118A.  doi: 10.1039/C6FD00118A

    43. [43]

      Pan, G.; Liu, S.; Zhao, X.; Zhao, J.; Fan, C.; Cui, W. Biomaterials 2015, 53, 202.  doi: 10.1016/j.biomaterials.2015.02.078

    44. [44]

      Yang, Y.-C.; Lu, H.-H.; Wang, W.-T.; Liau, I. Anal. Chem. 2011, 83, 8267.  doi: 10.1021/ac202077x

    45. [45]

      Salonen, T.; Sareila, O. U.; Kankaanranta, H.; Tuominen, R.; Moilanen, E. Br. J. Pharmacol. 2006, 147, 790.  doi: 10.1038/sj.bjp.0706672

    46. [46]

      Wang, B.; Yu, P. F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K. Chem. Commun. 2013, 49, 1014.  doi: 10.1039/C2CC37803E

    47. [47]

      Karlsson, M.; Kurz, T.; Brunk, U. T.; Nilsson, S. E.; Frennesson, C. I. Biochem. J. 2010, 428, 183.  doi: 10.1042/BJ20100208

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(0)
  • Abstract views(1004)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return