Citation: Li Qi, Xu Han, Tong Yexiang, Li Gaoren. Pt Tube-in-Tube Arrays as HighPerformance Electrocatalysts for Direct Methanol Fuel Cell[J]. Acta Chimica Sinica, ;2017, 75(2): 193-198. doi: 10.6023/A16070337 shu

Pt Tube-in-Tube Arrays as HighPerformance Electrocatalysts for Direct Methanol Fuel Cell

  • Corresponding author: Tong Yexiang, sysutong@sina.cn Li Gaoren, ligaoren@mail.sysu.edu.cn
  • Received Date: 13 July 2016

    Fund Project: and Natural Science Foundation of Guangdong Province S2013020012833Project supported by the National Natural Science Foundation of China 51173212

Figures(11)

  • The Pt tube-in-tube arrays (TTAs) were designed and synthesized by ZnO template-assisted electrodeposition. As a robust integrated 3D electrocatalyst with high utilization rate and fast transport of electroactive species, the Pt TTAs exhibit a high electrochemically active surface area (ECSA) of 64.9 m2/gPt. Compared with Pt NTAs and commercial Pt/C catalyst, the Pt TTAs exhibit much improved electrocatalytic activity and durability for methanol oxidation. In addition, the Pt TTAs as electrocatalysts exhibit superior CO poisoning tolerance. This work shows the significant progress of Pt-based electrocatalysts with high-performance for direct methanol fuel cells.
  • 加载中
    1. [1]

      Jin, R.; Yang, Y.; Xing, Y.; Chen, L.; Song, S.; Jin, R. ACS Nano 2014, 8, 3664.

    2. [2]

      Zhang, G.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2013, 52, 8643. 

    3. [3]

      Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater. 2008, 20, 3987.

    4. [4]

      Wang, Z.; Zhou, L.; Lou, X. W. Adv. Mater. 2012, 24, 1903. 

    5. [5]

      Hu, J.; Chen, M.; Fang, X.; Wu, L. Chem. Soc. Rev. 2011, 40, 5472. 

    6. [6]

      Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X.; Lu, G. Q. Chem. Commun. 2011, 47, 12578. 

    7. [7]

      Lai, X.; Halpert, J. E.; Wang, D. Energy Environ. Sci. 2012, 5, 5604.

    8. [8]

      Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 13934. 

    9. [9]

      Wang, Z.; Luan, D.; Boey, F. Y. C.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 4738. 

    10. [10]

      Wang, L.; Tang, F.; Ozawa, K.; Chen, Z.-G.; Mukherj, A.; Zhu, Y.; Zou, J.; Cheng, H.-M.; Lu, G. Q. Angew. Chem. Int. Ed. 2009, 48, 7048. 

    11. [11]

      Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 17146. 

    12. [12]

      Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U. Nat. Mater. 2006, 5, 627.

    13. [13]

      Lai, X.; Li, J.; Korgel, B. A.; Dong, Z.; Li, Z.; Su, F.; Du, J.; Wang, D. Angew. Chem. Int. Ed. 2011, 50, 2738. 

    14. [14]

      Cho, W.; Lee, Y. H.; Lee, H. J.; Oh, M. Adv. Mater. 2011, 23, 1720.

    15. [15]

      Yang, M.; Ma, J.; Zhang, C.; Yang, Z.; Lu, Y. Angew. Chem. Int. Ed. 2005, 44, 6727. 

    16. [16]

      Roy, P.; Berger, S.; Schmuki, P. Angew. Chem. Int. Ed. 2011, 50, 2904. 

    17. [17]

      Deng, M.-J.; Chang, J.-K.; Wang, C.-C.; Chen, K.-W.; Lin, C.-M.; Tang, M.-T.; Chen, J.-M.; Lu, K.-T. Energy Environ. Sci. 2011, 4, 3942.

    18. [18]

      Kang, T.-S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F. Nano Lett. 2009, 9, 601. 

    19. [19]

      Park, M.-H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J. Angew. Chem. Int. Ed. 2011, 50, 9647. 

    20. [20]

      Lee, S. B.; Mitchell, D. T.; Trofin, L.; Nevanen, T. K.; Soderlund, H.; Martin, C. R. Science 2002, 296, 2198. 

    21. [21]

      Zhu, Z. P.; Su, D. S.; Weinberg, G.; Schlogl, R. Nano Lett. 2004, 4, 2255.

    22. [22]

      Albu, S.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G.; Macak, J.; Schmuki, P. Adv. Mater. 2008, 20, 4135.

    23. [23]

      Peng, Q.; Sun, X. Y.; Spagnola, J. C.; Saquing, C.; Khan, S. A.; Spontak, R. J.; Parsons, G. N. ACS Nano 2009, 3, 546. 

    24. [24]

      Ben Ishai, M.; Patolsky, F. Angew. Chem. Int. Ed. 2009, 48, 8699. 

    25. [25]

      Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433.

    26. [26]

      Rana, M.; Chhetri, M.; Loukya, B.; Patil, P. K.; Datta, R.; Gautam, U. K. ACS Appl. Mater. Interfaces 2015, 7, 4998. 

    27. [27]

      Ruan, M.; Sun, X.; Zhang, Y.; Xu, W. ACS Catal. 2015, 5, 233.

    28. [28]

      Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C.-K. ACS Nano 2014, 8, 7239.

    29. [29]

      Zhang, C.; Xu, L.; Shan, N.; Sun, T.; Chen, J.; Yan, Y. ACS Catal. 2014, 4, 1926.

    30. [30]

      Xie, S.; Choi, S.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J.; Kim, M. J.; Xie, Z.; Mavrikakis, M.; Xia, Y. Nano Lett. 2014, 14, 3570.

    31. [31]

      Zhang, Y.; Hsieh, Y.-C.; Volkov, V.; Su, D.; An, W.; Si, R.; Zhu, Y.; Liu, P.; Wang, J. X.; Adzic, R. R. ACS Catal. 2014, 4, 738. 

    32. [32]

      Qiu, H.-J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. ACS Catal. 2015, 5, 3779. 

    33. [33]

      Zhang, L.; Iyyamperumal, R.; Yancey, D. F.; Crooks, R. M.; Henkelman, G. ACS Nano 2013, 7, 9168. 

    34. [34]

      Oezaslan, M.; Hasché, F.; Strasser, P. J. Phys. Chem. Lett. 2013, 4, 3273. 

    35. [35]

      Li, H.; Wu, H.; Zhai, Y.; Xu, X.; Jin, Y. ACS Catal. 2013, 3, 2045.

    36. [36]

      Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Acc. Chem. Res. 2013, 46, 1867. 

    37. [37]

      Kang, Y.; Li, M.; Cai, Y.; Cargnello, M.; Diaz, R. E.; Gordon, T. R.; Wieder, N. L.; Adzic, R. R.; Gorte, R. J.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 2741. 

    38. [38]

      Liu, Y.; Mustain, W. E. J. Am. Chem. Soc. 2013, 135, 530. 

    39. [39]

      Kang, Y.; Ye, X.; Chen, J.; Cai, Y.; Diaz, R. E.; Adzic, R. R.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 42. 

    40. [40]

      Hwang, S. J.; Kim, S.-K.; Lee, J.-G.; Lee, S.-C.; Jang, J. H.; Kim, P.; Lim, T.-H.; Sung, Y.-E.; Yoo, S. J. J. Am. Chem. Soc. 2012, 134, 19508. 

    41. [41]

      Zhou, W.-P.; An, W.; Su, D.; Palomino, R.; Liu, P.; White, M. G.; Adzic, R. R. J. Phys. Chem. Lett. 2012, 3, 3286. 

    42. [42]

      Yang, J.; Yang, J.; Ying, J. Y. ACS Nano 2012, 6, 9373. 

    43. [43]

      Yu, W.; Porosoff, M. D.; Chen, J. G. Chem. Rev. 2012, 112, 5780. 

    44. [44]

      Tan, T. L.; Wang, L.-L.; Johnson, D. D.; Bai, K. Nano Lett. 2012, 12, 4875. 

    45. [45]

      Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C.-Y.; Huang, X.; Huang, Y. J. Am. Chem. Soc. 2012, 134, 12326. 

    46. [46]

      Kang, Y.; Pyo, J. B.; Ye, X.; Gordon, T. R.; Murray, C. B. ACS Nano 2012, 6, 5642. 

    47. [47]

      Liu, H.-X.; Tian, N.; Brandon, M. P.; Zhou, Z.-Y.; Lin, J.-L.; Hardacre, C.; Lin, W.-F.; Sun, S.-G. ACS Catal. 2012, 2, 708.

    48. [48]

      Kang, Y.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R.; Stach, E.; Li, J.; Murray, C. B. ACS Nano 2012, 6, 2818. 

    49. [49]

      Hong, J. W.; Kang, S. W.; Choi, B.-S.; Kim, D.; Lee, S. B.; Han, S. W. ACS Nano 2012, 6, 2410. 

    50. [50]

      Yamauchi, Y.; Tonegawa, A.; Komatsu, M.; Wang, H.; Wang, L.; Nemoto, Y.; Suzuki, N.; Kuroda, K. J. Am. Chem. Soc. 2012, 134, 5100. 

    51. [51]

      Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M. B.; Zhou, W.; Sutter, E.; Wong, S. S.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 9783. 

    52. [52]

      Wang, L.; Nemoto, Y.; Yamauchi, Y. J. Am. Chem. Soc. 2011, 133, 9674. 

    53. [53]

      Wang, L.; Yamauchi, Y. Chem. Mater. 2011, 23, 2457.

    54. [54]

      Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. J. Am. Chem. Soc. 2011, 133, 6078. 

    55. [55]

      Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Angew. Chem. In. Ed. 2012, 51, 7213. 

    56. [56]

      Chen, Z.; Waje, M.; Li, W.; Yan, Y. Angew. Chem. In. Ed. 2007, 46, 4060. 

  • 加载中
    1. [1]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    2. [2]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    3. [3]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    4. [4]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    5. [5]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    6. [6]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    7. [7]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    8. [8]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    9. [9]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    10. [10]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    11. [11]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    12. [12]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    13. [13]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    16. [16]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    19. [19]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    20. [20]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

Metrics
  • PDF Downloads(3)
  • Abstract views(847)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return