Citation: Li Ran, Lu Yanying, Lei Kaixiang, Li Fujun, Cheng Fangyi, Chen Jun. Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 199-205. doi: 10.6023/A16070329 shu

Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries

  • Corresponding author: Cheng Fangyi, fycheng@nankai.edu.cn.Tel
  • Received Date: 7 July 2016
    Revised Date: 30 September 2016

    Fund Project: Ministry of Education 113016AProject supported by the National Natural Science Foundation of China 21322101, 21231005111 Project B12015

Figures(9)

  • Recycling use is one of the energy and resource saving strategies to dispose depleted batteries, especially primary lithium batteries that employ electrode materials based on expensive and low-abundance elements. In this study, we report in detail the recycling use of discharged Li-AgVO3 primary battery for rechargeable Li-O2 battery. We demonstrate that the discharged Li-AgVO3 cell, in which metallic silver nanoparticles in-situ generated in the vanadium oxide nanowires cathode efficiently catalyze the oxygen reduction/evolution reactions (ORR/OER), can be resumed as rechargeable Li-O2 cells when they are exposed at O2 atmosphere. By controlling the discharge depths, we obtained different cathodes that were composed of vanadium oxide nanowires and silver nanoparticles. As the electrode was discharged to a lower voltage, more silver nanoparticles with larger particle size were distributed on the surface of vanadium oxides, as a result of the sequential reduction of Ag+ to Ag0 and V5+ to V4+. Specifically, the average size of formed Ag nanoparticles was 15 nm and 70 nm at ceased discharge voltage of 2.9 V and 2.0 V, respectively, while the formation of V4+ was observed at discharge voltage lower than 2.3 V. Electrochemical tests indicated that the Li-O2 cells assembled with the AgVO3 cathode discharged to 2.3 V (AgVO3-2.3) exhibited the highest specific capacity (9000 mAh·gcarbon-1), the lowest overpotential and robust cycling performance (up to 95 cycles at the current density of 300 mA·gcarbon-1). The remarkable electrochemical performance of the Li-O2 battery with the AgVO3-2.3 cathode is attributed to the optimization of amount, size and distribution of generated silver nanoparticles that contribute to high electronic conductivity and abundant active sites for the ORR/OER. A combined analysis of electrochemical impedance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the AgVO3-2.3 cathode enables the reversible formation and decomposition of Li2O2 with lower charge transfer resistance on discharge and charge. The results presented here would provide new insight into the promising recycling application of depleted primary Li-AgVO3 batteries in rechargeable high-capacity Li-O2 batteries.
  • 加载中
    1. [1]

      Takeuchi, K. J.; Marschilok, A. C.; Davis, S. M.; Leising, R. A.; Takeuchi, E. S. Coord. Chem. Rev. 2001, 219, 283.

    2. [2]

      Cheng, F.; Chen, J. J. Mater. Chem. 2011, 21, 9841. 

    3. [3]

      Han, C.; Pi, Y.; An, Q.; Mai, L.; Xie, J.; Xu, X.; Xu, L.; Zhao, Y. Nano Lett. 2012, 12, 4668.

    4. [4]

      Liang, S.; Zhou, J.; Pan, A.; Li, Y.; Chen, T.; Tian, Z.; Ding, H. Mater. Lett. 2012, 74, 176.

    5. [5]

      Zeng, H.; Wang, Q.; Rao, Y. RSC Adv. 2015, 5, 3011.

    6. [6]

      Kang, D. H.; Chen, M.; Ogunseitan, O. A. Environ. Sci. Technol. 2013, 47, 5495. 

    7. [7]

      Liu, Q.; Xu, J.; Xu, D.; Zhang, X. Nat. Commun. 2015, 6, 7892.

    8. [8]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. 

    9. [9]

      Sen, X.; Guo, Y.; Wan, L. Scientia Sinica Chimica 2011, 41, 1229. 

    10. [10]

      Zhang, Z.; Li, L.; Ren, Q.; Xu, Q.; Cao, B. Chin. J. Chem. 2016, 34, 631.

    11. [11]

      Zhang, Y.; Li, Y.; Xia, X.; Wang, X.; Gu, C.; Tu, J. Sci. China Tech. Sci. 2015, 58, 1809. 

    12. [12]

      Chen, J.; Cheng, F. Acc. Chem. Res. 2009, 42, 713. 

    13. [13]

      Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2, 830. 

    14. [14]

    15. [15]

      Cao, Y.; Wei, Z.; He, J.; Zang, J.; Zhang, Q.; Zheng, M.; Dong, Q. F. Energy Environ. Sci. 2012, 5, 9765. 

    16. [16]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172. 

    17. [17]

    18. [18]

    19. [19]

       

    20. [20]

    21. [21]

      Hu, Y.; Zhang, T.; Cheng, F.; Zhao, Q.; Han, X.; Chen, J. Angew. Chem. Int. Ed. 2015, 54, 4338. 

    22. [22]

      Zhang, S.; Li, W.; Li, C.; Chen, J. J. Phys. Chem. B 2006, 110, 24855. 

    23. [23]

      Bao, Q.; Bao, S.; Li, C. M.; Qi, X.; Pan, C.; Zang, J.; Wang, W.; Tang, D. Y. Chem. Mater. 2007, 19, 5965. 

    24. [24]

      Xu, Y.; Han, X.; Zheng, L.; Wei, S.; Xie, Y. Dalton Trans. 2011, 40, 10751.

    25. [25]

      Kirshenbaum, K.; Bock, D. C.; Lee, C. Y.; Zhong, Z.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S. Science 2015, 347, 149. 

    26. [26]

      Wittmaier, D.; Cañas, N. A.; Biswas, I.; Friedrich, K. A. Adv. Energy Mater. 2015, 5, 1500763. 

    27. [27]

    28. [28]

      Kumar, S.; Selvaraj, C.; Scanlon, L. G.; Munichandraiah, N. Phys. Chem. Chem. Phys. 2014, 16, 22830. 

    29. [29]

      Cui, Q.; Zhang, Y.; Peng, Z. Chem. Res. Chin. Univ. 2016, 32, 106. 

    30. [30]

      Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X.; Wen, J.; Miller, D.; Assary, R. S. Nat. Commun. 2014, 5, 4895. 

    31. [31]

      Park, J. B.; Luo, X.; Lu, J.; Shin, C. D.; Yoon, C. S.; Amine, K.; Sun, Y. K. J. Phys. Chem. C 2015, 119, 15036. 

    32. [32]

      Rozier, P.; Savariault, J. M.; Galy, J. J. Solid State Chem. 1996, 122, 303. 

    33. [33]

      Song, J.; Lin, Y.; Yao, H.; Fan, F.; Li, X.; Yu, S. ACS Nano 2009, 3, 653.

    34. [34]

      Lim, S. H.; Kim, B. K.; Yoon, W. Y. J. Appl. Electrochem. 2012, 42, 1045. 

    35. [35]

      Li, F.; Tang, D.-M.; Zhang, T.; Liao, K.; He, P.; Golberg, D.; Yamada, A.; Zhou, H. Adv. Energy Mater. 2015, 5, 1500294. 

    36. [36]

      Cui, Q.; Zhang, Y.; Ma, S.; Peng, Z. Sci. Bull. 2015, 60, 1227.

    37. [37]

      Liu, Q.; Jiang, Y.; Xu, J.; Xu, D.; Chang, Z.; Yin, Y.; Liu, W.; Zhang, X. Nano Res. 2015, 8, 576.

    38. [38]

      Shao, X.; Zhang, T.; Wen, Z. Chin. J. Chem. 2017, 35, 35.

    39. [39]

  • 加载中
    1. [1]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    18. [18]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    19. [19]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(4)
  • Abstract views(1386)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return