Citation: Xiang Xingde, Lu Yanying, Chen Jun. Advance and Prospect of Functional Materials for Sodium Ion Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 154-162. doi: 10.6023/A16060275 shu

Advance and Prospect of Functional Materials for Sodium Ion Batteries

  • Corresponding author: Chen Jun, chenabc@nankai.edu.cn
  • Received Date: 3 June 2016

    Fund Project: and the National Natural Science Foundation of China 21421001Project supported by Innovative Team Project of Ministry of Education IRT13R30

Figures(4)

  • Sodium ion batteries (SIBs) as a new chemical power source have recently attracted a great attention for large-scale energy storage owing to the abundance and low cost of sodium resources. In order to achieve advanced SIBs with high specific energy, long cycling lifetime and fast charge/discharge ability, efforts have been devoted to developing advanced electrode materials with large specific capacity, robust cycling stability and good rate capability, as well as functional electrolytes with high ion-conductivity and wide electrochemical window. Promising cathode materials include high-capacity layered oxides, high-potential fluorophosphates and long-lifetime phosphates. Available anode materials consist of highly stable Ti-based layered oxides and carbon materials, high-capacity elemental metals/non-metals and low-cost metal-based compounds. Effective electrolytes involve ester-based electrolytes and ether-based electrolytes. This review summarizes the recent advance of electrode materials and electrolytes for SIBs, mainly focusing on their electrochemical properties, existing challenges and resolution strategies.
  • 加载中
    1. [1]

      Xiang, X. D.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343.

    2. [2]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636.

    3. [3]

    4. [4]

      Pan, H. L.; Hu, Y. S.; Chen, L. Q. Energy Environ. Sci. 2013, 6, 2338. 

    5. [5]

      Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Chem. Soc. Rev. 2015, 44, 699. 

    6. [6]

      Gutierrez, A.; Benedek, N. A.; Manthiram, A. Chem. Mater. 2013, 25, 4010.

    7. [7]

      Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energy Environ. Sci. 2015, 8, 81.

    8. [8]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.

    9. [9]

      Xu, K. Chem. Rev. 2014, 114, 11503.

    10. [10]

      Zhang, K.; Hu, Z.; Tao, Z.; Chen, J. Sci. Chin. Mater. 2014, 57, 42. 

    11. [11]

      Ma, X. H.; Chen, H. L.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1307.

    12. [12]

      Yabuuchi, N.; Yoshida, H.; Komaba, S. Electrochemistry 2012, 80, 716.

    13. [13]

      Han, M. H.; Gonzalo, E.; Casas-Cabanas, M.; Rojo, T. J. Power Sources 2014, 258, 266. 

    14. [14]

      Vassilaras, P.; Ma, X.; Li, X.; Ceder, G. J. Electrochem. Soc. 2012, 160, A207.

    15. [15]

      Kubota, K.; Ikeuchi, I.; Nakayama, T.; Takei, C.; Yabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. J. Phys. Chem. C 2015, 119, 166. 

    16. [16]

      Zhao, J.; Zhao, L.; Dimov, N.; Okada, S.; Nishida, T. J. Electrochem. Soc. 2013, 160, A3077.

    17. [17]

      Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y.; Ai, X. C.; Feng, J.; Yang, H. Adv. Mater. 2014, 26, 6301.

    18. [18]

      Sathiya, M.; Hemalatha, K.; Ramesha, K.; Tarascon, J. M.; Prakash, A. S. Chem. Mater. 2012, 24, 1846. 

    19. [19]

      Oh, S. M.; Myung, S. T.; Yoon, C. S.; Lu, J.; Hassoun, J.; Scrosati, B.; Amine, K.; Sun, Y. K. Nano Lett. 2014, 14, 1620. 

    20. [20]

      Sun, X.; Jin, Y.; Zhang, C. Y.; Wen, J. W.; Shao, Y.; Zang, Y.; Chen, C. H. J. Mater. Chem. A 2014, 2, 17268. 

    21. [21]

      Hwang, J. Y.; Oh, S. M.; Myung, S. T.; Chung, K. Y.; Belharouak, I.; Sun, Y. K. Nat. Commun. 2015, 6, 6865. 

    22. [22]

      Guo, S. H.; Liu, P.; Yu, H. J.; Zhu, Y. B.; Chen, M. W.; Ishida, M.; Zhou, H. S. Angew. Chem. Int. Ed. 2015, 54, 5894. 

    23. [23]

      Yu, C. Y.; Park, J. S.; Jung, H. G.; Chung, K. Y.; Aurbach, D.; Sun, Y. K.; Myung, S. T. Energy Environ. Sci. 2015, 8, 2019. 

    24. [24]

      Zhan, P.; Wang, S.; Yuan, Y.; Jiao, K. L.; Jiao, S. Q. J. Electrochem. Soc. 2015, 162, A1028.

    25. [25]

      Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y. S.; Yang, W.; Kang, K.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2015, 6, 6401.

    26. [26]

      Guo, S. H.; Yu, H. J.; Liu, D. Q.; Tian, W.; Liu, X. Z.; Hanada, N.; Ishida, M.; Zhou, H. S. Chem. Commun. 2014, 50, 7998. 

    27. [27]

      Park, Y. U.; Seo, D. H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. Adv. Funct. Mater. 2014, 24, 4603. 

    28. [28]

      Zhao, J. M.; Mu, L. Q.; Qi, Y. R.; Hu, Y. S.; Liu, H. Z.; Dai, S. Chem. Commun. 2015, 51, 7160.

    29. [29]

      Qi, Y.; Mu, L.; Zhao, J.; Hu, Y. S.; Liu, H.; Dai, S. Angew. Chem. Int. Ed. 2015, 54, 9911. 

    30. [30]

      Shakoor, R. A.; Seo, D. H.; Kim, H.; Park, Y. U.; Kim, J.; Kim, S. W.; Gwon, H.; Lee, S.; Kang, K. J. Mater. Chem. 2012, 22, 20535. 

    31. [31]

      Peng, M. H.; Li, B. A.; Yan, H. J.; Zhang, D. T.; Wang, X. Y.; Xia, D. G.; Guo, G. S. Angew. Chem. Int. Ed. 2015, 54, 6452. 

    32. [32]

      Sharma, N.; Serras, P.; Palomares, V.; Brand, H. E. A.; Alonso, J.; Kubiak, P.; Fdez-Gubieda, M. L.; Rojo, T. Chem. Mater. 2014, 26, 3391.

    33. [33]

      Serras, P.; Palomares, V.; Rojo, T.; Brand, H. E. A.; Sharma, N. J. Mater. Chem. A 2014, 2, 7766. 

    34. [34]

      Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. J. Am. Chem. Soc. 2013, 135, 13870. 

    35. [35]

      Liu, Q.; Wang, D. X.; Yang, X.; Chen, N.; Wang, C. Z.; Bie, X. F.; Wei, Y. J.; Chen, G.; Du, F. J. Mater. Chem. A 2015, 3, 21478. 

    36. [36]

      Jin, H.; Dong, J.; Uchaker, E.; Zhang, Q.; Zhou, X.; Hou, S.; Li, J.; Cao, G. J. Mater. Chem. A 2015, 3, 17563. 

    37. [37]

      Xiang, X. D.; Lu, Q. Q.; Han, M.; Chen, J. Chem. Commun. 2016, 52, 3653.

    38. [38]

      Xu, M. W.; Wang, L.; Zhao, X.; Song, J.; Xie, H.; Lu, Y. H.; Goodenough, J. B. Phys. Chem. Chem. Phys. 2013, 15, 13032. 

    39. [39]

      Li, C.; Miao, X.; Chu, W.; Wu, P.; Tong, D. G. J. Mater. Chem. A 2015, 3, 8265. 

    40. [40]

      Kim, J.; Seo, D. H.; Kim, H.; Park, I.; Yoo, J. K.; Jung, S. K.; Park, Y. U.; Goddard, W. A.; Kang, K. Energy Environ. Sci. 2015, 8, 540.

    41. [41]

      Oh, S. M.; Myung, S. T.; Hassoun, J.; Scrosati, B.; Sun, Y. K. Electrochem. Commun. 2012, 22, 149. 

    42. [42]

      Jian, Z. L.; Yuan, C. C.; Han, W. Z.; Lu, X.; Gu, L.; Xi, X. K.; Hu, Y. S.; Li, H.; Chen, W.; Chen, D. F.; Ikuhara, Y.; Chen, L. Q. Adv. Funct. Mater. 2014, 24, 4265. 

    43. [43]

      Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen, W.; Chen, L. Q. Electrochem. Commun. 2012, 14, 86. 

    44. [44]

      Xu, Y.; Wei, Q.; Xu, C.; Li, Q.; An, Q.; Zhang, P.; Sheng, J.; Zhou, L.; Mai, L. Adv. Energy Mater. 2016, 6, 1600389. 

    45. [45]

      Li, S.; Dong, Y. F.; Xu, L.; Xu, X.; He, L.; Mai, L. Q. Adv. Mater. 2014, 26, 3545. 

    46. [46]

      Jian, Z.; Han, W.; Lu, X.; Yang, H.; Hu, Y. S.; Zhou, J.; Zhou, Z.; Li, J.; Chen, W.; Chen, D.; Chen, L. Adv. Energy Mater. 2013, 3, 156. 

    47. [47]

      Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. J. Mater. Chem. A 2014, 2, 8668. 

    48. [48]

      Zhu, C.; Song, K. P.; van Aken, P. A.; Maier, J.; Yu, Y. Nano Lett. 2014, 14, 2175. 

    49. [49]

      Yang, J.; Han, D. W.; Jo, M. R.; Song, K.; Kim, Y. I.; Chou, S. L.; Liu, H. K.; Kang, Y. M. J. Mater. Chem. A 2015, 3, 1005. 

    50. [50]

      Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. Energy Environ. Sci. 2015, 8, 195.

    51. [51]

      Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 6. 6401

    52. [52]

      Yu, H. J.; Ren, Y.; Xiao, D. D.; Guo, S. H.; Zhu, Y. B.; Qian, Y. M.; Gu, L.; Zhou, H. S. Angew. Chem. Int. Ed. 2014, 53, 8963. 

    53. [53]

      Guo, S. S.; Liu, P.; Sun, Y.; Zhu, K.; Yi, J.; Chen, M. W.; Ishida, M.; Zhou, H. S. Angew. Chem. Int. Ed. 2015, 54, 11701. 

    54. [54]

      Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K. Y.; Park, M. S.; Yoon, W. S.; Kang, K. Energy Environ. Sci. 2015, 8, 2963.

    55. [55]

      Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Adv. Funct. Mater. 2015, 25, 534. 

    56. [56]

      Jache, B.; Adelhelm, P. Angew. Chem. Int. Ed. 2014, 53, 10169. 

    57. [57]

      Zhu, Z. Q.; Cheng, F. Y.; Hu, Z.; Niu, Z. Q.; Chen, J. J. Power Sources 2015, 293, 626. 

    58. [58]

      Ponrouch, A.; Goñi, A. R.; Palacín, M. R. Electrochem. Commun. 2013, 27, 85. 

    59. [59]

      Bommier, C.; Luo, W.; Gao, W.-Y.; Greaney, A.; Ma, S.; Ji, X. Carbon 2014, 76, 165.

    60. [60]

      Zhou, X. S.; Guo, Y. G. ChemElectroChem 2014, 1, 83. 

    61. [61]

      Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Nat. Commun. 2014, 5, 4033.

    62. [62]

      Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. Nano Lett. 2015, 15, 5888. 

    63. [63]

      Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Phys. Chem. Chem. Phys. 2014, 16, 15007. 

    64. [64]

      Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Angew. Chem. Int. Ed. 2013, 52, 4633. 

    65. [65]

      Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Adv. Funct. Mater. 2015, 25, 214. 

    66. [66]

      Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Nano Res. 2015, 8, 3384.

    67. [67]

      Wu, L.; Lu, H. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. J. Mater. Chem. A 2015, 3, 5708. 

    68. [68]

      Pei, L. K.; Zhao, Q.; Chen, C. C.; Liang, J.; Chen, J. ChemElectroChem 2015, 2, 1652.

    69. [69]

      Liu, Y.; Zhang, N.; Jiao, L.; Chen, J. Adv. Mater. 2015, 27, 6702.

    70. [70]

      Lu, Y. Y.; Zhang, N.; Zhao, Q.; Liang, J.; Chen, J. Nanoscale 2015, 7, 2770.

    71. [71]

      Zhang, N.; Han, X.; Liu, Y.; Hu, X.; Zhao, Q.; Chen, J. Adv. Energy Mater. 2015, 5, 1401123. 

    72. [72]

      Liu, Y.; Zhang, N.; Yu, C.; Jiao, L.; Chen, J. Nano Lett. 2016, 16, 3321.

    73. [73]

      Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Adv. Mater. 2014, 26, 3854. 

    74. [74]

      Zhang, Y. D.; Zhu, P. Y.; Huang, L. L.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Adv. Funct. Mater. 2015, 25, 481. 

    75. [75]

      Zhu, C.; Mu, X.; van Aken, P. A.; Yu, Y.; Maier, J. Angew. Chem. Int. Ed. 2014, 53, 2152. 

    76. [76]

      Lu, Y.; Zhao, Q.; Zhang, N.; Lei, K.; Li, F.; Chen, J. Adv. Funct. Mater. 2016, 26, 911. 

    77. [77]

      Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. Nat. Commun. 2013, 4, 2922.

    78. [78]

      Zhang, K.; Hu, Z.; Liu, X.; Tao, Z.; Chen, J. Adv. Mater. 2015, 27, 3305.

    79. [79]

      Fan, X.; Mao, J.; Zhu, Y.; Luo, C.; Suo, L.; Gao, T.; Han, F.; Liou, S. C.; Wang, C. Adv. Energy Mater. 2015, 5, 1500174. 

    80. [80]

      Qian, J.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. Nano Lett. 2014, 14, 1865.

    81. [81]

      Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacín, M. R. Energy Environ. Sci. 2012, 5, 8572. 

    82. [82]

      Guo, C.; Zhang, K.; Zhao, Q.; Pei, L.; Chen, J. Chem. Commun. 2015, 51, 10244.

    83. [83]

      Zhang, K.; Guo, C.; Zhao, Q.; Niu, Z.; Chen, J. Adv. Sci. 2015, 2, 1500018.

    84. [84]

      Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Energy Environ. Sci. 2015, 8, 1309.

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    19. [19]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    20. [20]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

Metrics
  • PDF Downloads(131)
  • Abstract views(5270)
  • HTML views(1966)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return