Citation: Shao Rong, Yang Xinbo, Yin Shiwei, Wang Wenliang. Molecular Design of Benzothiadiazole Derivatives Electron Acceptors and Matching of Donor-Acceptor Materials[J]. Acta Chimica Sinica, ;2016, 74(8): 676-682. doi: 10.6023/A16050268 shu

Molecular Design of Benzothiadiazole Derivatives Electron Acceptors and Matching of Donor-Acceptor Materials

  • Corresponding author: Wang Wenliang, wlwang@snnu.edu.cn
  • Received Date: 30 May 2016

    Fund Project: the National Natural Science Foundation of China 21473108the National Natural Science Foundation of China 21173139Shaanxi Innovative Team of Key Science and Technology 2013KCT-17

Figures(7)

  • To better understand the relationships between the microstructure and the optoelectronic characteristics of the electron acceptor and to meet the needs of donor-acceptor materials with excellent optical properties for solar cell, a series of acceptor molecules with A'-π-A-π-A' type are designed. In these molecules, the core framework of benzothiadiazole is used as an acceptor (A), three kinds of conjugated heterocyclics (A') with different abilities of electron-withdrawing and steric effects are applied as the terminals, and various conjugated structures, such as the double bond, thiophene, benzothiophene and vinyl thiophene, are utilized as π-bridge, respectively. Their geometric configurations, the characteristics of frontier molecular orbital, optical properties, as well as the electronic reorganization energy are predicted by DFT-B3LYP and TD-DFT-CAM-B3LYP. Solvent effects from acetone and chlorobenzene on molecular properties are studied. Furthermore, the Donor-Acceptor (D-A) interfaces are respectively constructed by combining the excellent acceptors with the selected two donors. The DFT-D3 method is used to scan the binding energy of D-A complex, in order to determine the stacked displacement of the interface. The degree of interface recombination is evaluated by calculating electronic coupling (Vif) between HOMO of donors and LUMO of acceptors. The results show that modifying benzothiadiazole with a reasonable substituent is an effective way to adjust LUMO energy levels and lead to the noticeable variation of the energy gap. Combining planar electron acceptor materials (A'-π-A-π-A' type) with non-planar electron donor materials (D), to form the optical active layer is a practical approach for preventing interface recombination and achieving high open-circuit voltage (Voc). Considering ΔEL, Vif, light absorption efficiency, and solvation effect, D1-1aγ and D1-2aγ combinations are the most promising candidates of optical active layer materials in organic solar cell.
  • 加载中
    1. [1]

      Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474.  doi: 10.1126/science.258.5087.1474

    2. [2]

      Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. Adv. Mater. 2010, 22, 3876.  doi: 10.1002/adma.200903628

    3. [3]

      Meng, Q. B. Acta Chim. Sinica 2015, 73, 161.  doi: 10.6023/A1503E001
       

    4. [4]

      Carlotto, S. J. Phys. Chem. A 2014, 118, 4808.  doi: 10.1021/jp503040n

    5. [5]

      Armin, A.; Kassal, I.; Shaw, P. E.; Hambsch, M.; Stolterfoht, M.; Lyons, D. M.; Li, J.; Shi, Z.; Burn, P. L.; Meredith, P. J. Am. Chem. Soc. 2014, 136, 11465.  doi: 10.1021/ja505330x

    6. [6]

      Mishra, A.; Bäuerle, P. Angew. Chem. Int. Ed. 2012, 51, 2020.  doi: 10.1002/anie.201102326

    7. [7]

      Walker, B.; Liu, J.; Kim, C.; Welch, G. C.; Park, J. K.; Lin, J.; Zalar, P.; Proctor, C. M.; Seo, J. H.; Bazan, G. C.; Nguyen, T.-Q. Energy Environ. Sci. 2013, 6, 952.  doi: 10.1039/c3ee24351f

    8. [8]

      Wang, Z.; Uemura, Y.; Zhou, Y.; Miyadera, T.; Azumi, R.; Yoshida, Y.; Chikamatsu, M. ACS Appl. Mater. Interfaces 2015, 7, 10814.  doi: 10.1021/acsami.5b01723

    9. [9]

      Heremans, P.; Cheyns, D.; Rand, B. P. Acc. Chem. Res. 2009, 42, 1740.  doi: 10.1021/ar9000923

    10. [10]

      Reese, M. O.; Nardes, A. M.; Rupert, B. L.; Larsen, R. E.; Olson, D. C.; Lloyd, M. T.; Shaheen, S. E.; Ginley, D. S.; Rumbles, G.; Kopidakis, N. Adv. Funct. Mater. 2010, 20, 3476.  doi: 10.1002/adfm.v20:20

    11. [11]

      Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sinica 2014, 72, 158.  doi: 10.6023/A13111142
       

    12. [12]

      Dou, C.; Chen, D.; Iqbal, J.; Yuan, Y.; Zhang, H.; Wang, Y. Langmuir 2011, 27, 6323.  doi: 10.1021/la200382b

    13. [13]

      Woo, C. H.; Holcombe, T. W.; Unruh, D. A.; Sellinger, A. Chem. Mater. 2010, 22, 1673.  doi: 10.1021/cm903067a

    14. [14]

      Wolfer, P.; Schwenn, P. E.; Pandey, A. K.; Fang, Y.; Stingelin, N.; Burn, P. L.; Meredith, P. J. Mater. Chem. A. 2013, 1, 5989.  doi: 10.1039/c3ta10554g

    15. [15]

      Bloking, J. T.; Han, X.; Higgs, A. T.; Kastrop, J. P.; Pandey, L.; Norton, J. E.; Risko, C.; Chen, C. E.; Bredas, J.-E.; McGehee, M. D.; Sellinger, A. Chem. Mater. 2011, 23, 5484.  doi: 10.1021/cm203111k

    16. [16]

      Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.  doi: 10.1021/jp9716997

    17. [17]

      Schlenker, C. W.; Thompson, M. E. Chem. Commun. 2011, 47, 3702.  doi: 10.1039/c0cc04020g

    18. [18]

      Newton, M. D.; Sutin, N. Ann. Rev. Phys. Chem. 1984, 35, 437.  doi: 10.1146/annurev.pc.35.100184.002253

    19. [19]

      Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996, 100, 13148.  doi: 10.1021/jp9605663

    20. [20]

      Lemaur, V.; Steel, M.; Beljonne, D.; Brédas, J.-L.; Cornil, J. J. Am. Chem. Soc. 2005, 127, 6077.  doi: 10.1021/ja042390l

    21. [21]

      Hsu, C. P. Acc. Chem. Res. 2009, 42, 509.  doi: 10.1021/ar800153f

    22. [22]

      Yang, Y. M.; Yin, S. W.; Li, L. L.; Yang, J. Y. Acta Chim. Sinica 2011, 69, 1991.
       

    23. [23]

      Grimme, S. WIREs Comput. Mol. Sci. 2011, 1, 211.  doi: 10.1002/wcms.30

    24. [24]

      Liu, H.; Brémond, É.; Prlj, A.; Gonthier, J. F.; Corminboeuf, C. J. Phys. Chem. Lett. 2014, 5, 2320.  doi: 10.1021/jz501078s

    25. [25]

      Guan, L.; Wang, W. L.; Shao, R.; Liu, F. Y.; Yin, S. W. J. Mol. Model. 2015, 21, 126-1.  doi: 10.1007/s00894-015-2677-2

    26. [26]

      Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.  doi: 10.1002/adma.v23.2

    27. [27]

      Shao, R.; Wang, W. L.; Yang, X. B.; Yin, X. W. Sci. China-Chem. 2016, 46, 699.

    28. [28]

      Liu, X.; Su, S. J.; Cao, Y. Polymer Bulletin 2014, 12, 68.

    29. [29]

      Nalwa, H. S. Handbook of Advanced Electronic and Photonic Materials and Device, Academic San Diego, CA, 2001.

    30. [30]

      Fitzner, R.; Reinold, E.; Mishra, A. Adv. Funct. Mater. 2011, 21, 897.  doi: 10.1002/adfm.201001639

    31. [31]

      Lin, L. Y.; Chen, Y. H.; Huang, Z. Y.; Lin, H. W.; Chou, S. H.; Lin, F.; Chen, C. W.; Liu, Y. H.; Wong, K. T. J. Am. Chem. Soc. 2011, 133, 15822.  doi: 10.1021/ja205126t

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

Metrics
  • PDF Downloads(0)
  • Abstract views(825)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return