Citation: Zhao Mi, Li Haohua, Shen Xiaoping. Facile Electrochemical Synthesis of CeO2@Ag@CdSe Nanotube Arrays with Enhanced Photoelectrochemical Performance[J]. Acta Chimica Sinica, ;2016, 74(10): 825-832. doi: 10.6023/A16050256
-
In this work, for the first time, three-component CeO2@Ag@CdSe heterostructured nanotube arrays with remarkable photoelectrochemical (PEC) properties have been synthesized on the FTO conductive glass substrate by an electrodeposition method. One-dimensional vertically ordered CeO2 nanotube arrays were prepared on the FTO substrate by electrodeposition method with Ce(NO3)2·6H2O and C2H6SO as the raw materials. Ag nanoparticles were deposited on the surface of CeO2 nanotube arrays through a successive electrodeposition in a solution of AgNO3, and a composite system of CeO2@Ag was obtained. Then a thin CdSe layer was deposited and covered on the CeO2@Ag system to form three-component CeO2@Ag@CdSe heterostructured nanotube arrays. The as-synthesized products were characterized using X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The PEC properties of the obtained products were recorded with electrochemical workstation, and the results showed that the CdSe layer could greatly enhance light harvesting and significantly improve charge separation. Moreover, the modification with Ag nanoparticles can significantly strengthen the light-harvesting ability through the localized surface plasma resonance effect and provide an interior direct pathway to facilitate the separation and transport of photogenerated carriers. It has been demonstrated that the enhanced PEC properties of CeO2@Ag@CdSe heterostructures are direct consequence of the synergetic effects of enhanced visible light absorption and the effective separation and transportation of photogenerated carriers at interface of type-II heterostructure via the Ag nanoparticles. Therefore, the CeO2@Ag@CdSe heterostructured nanotubes generate a remarkable photocurrent density of 3.92 mA·cm-2 at a potential of -0.2 V (vs. Ag/AgCl), which is 4.9 and 17.9 times higher than that of two-component CeO2@CdSe (0.802 mA·cm-2) and CeO2@Ag (0.218 mA·cm-2) systems, respectively. It also gives an incident photon to current conversion efficiency (IPCE) as high as 72% at around 360 nm. Moreover, the photoelectrode shows high photostability during the test period over 16 min.
-
-
[1]
[1] Chen, H. M.; Chen, C. K.; Liu, R. S.; Zhang, L.; Zhang, J.; Wil-kinson, D. P. Chem. Soc. Rev. 2012, 41(17), 5654.
-
[2]
[2] Wang, G.; Lu, X.; Zhai, T.; Ling, Y.; Wang, H.; Tong, Y.; Li, Y. Nanoscale 2012, 4(10), 3123.
-
[3]
[3] Prieto-Centurion, D.; Eaton, T. R.; Roberts, C. A.; Fanson, P. T.; Notestein, J. M. Appl. Catal. B-Environ. 2015, 168, 68.
-
[4]
[4] Zhu, H.; Song, N.; Lian, T. J. Am. Chem. Soc. 2010, 132(42), 15038.
-
[5]
[5] Song, F.; Ding, Y.; Zhao, C. Acta Chim. Sinica 2014, 72, 133(in Chinese). (宋芳源, 丁勇, 赵崇超, 化学学报, 2014, 72(2), 133.)
-
[6]
[6] Wan, G.; Fu, Y.; Guo, J.; Xiang, Z. Acta Chim. Sinica 2015, 73, 557(in Chinese). (万刚, 付宇昂, 郭佳宁, 向中华, 化学学报, 2015, 73(6), 557.)
-
[7]
[7] Li, Y.; Qi, L. Acta Chim. Sinica 2015, 73(9), 869(in Chinese). (李扬, 齐利民, 化学学报, 2015, 73(9), 869.)
-
[8]
[8] Khan, M. M.; Ansari, S. A.; Ansari, M. O.; Min, B. K.; Lee, J.; Cho, M. H. J. Phys. Chem. C 2014, 118(18), 9477.
-
[9]
[9] Lu, X.; Zhai, T.; Cui, H.; Shi, J.; Xie, S.; Huang, Y.; Liang, C.; Tong, Y. J. Mater. Chem. 2011, 21(15), 5569.
-
[10]
[10] Li, W.; Xie, S.; Li, M.; Ouyang, X.; Cui, G.; Lu, X.; Tong, Y. J. Mater. Chem. A 2013, 1(13), 4190.
-
[11]
[11] Zhang, J.; Li, L.; Huang, X.; Li, G. J. Mater. Chem. 2012, 22(21), 10480.
-
[12]
[12] Khan, M. M.; Ansari, S. A.; Lee, J. H.; Ansari, M. O.; Lee, J.; Cho, M. H. J. Colloid Interface Sci. 2014, 431, 255.
-
[13]
[13] Zhang, N.; Liu, S.; Xu, Y. J. Nanoscale 2012, 4(7), 2227.
-
[14]
[14] Li, H.; Chen, C.; Huang, X.; Leng, Y.; Hou, M.; Xiao, X.; Bao, J.; You, J.; Zhang, W.; Wang, Y.; Song, J.; Wang, Y.; Liu, Q.; Hope, G. A. J. Power Sources 2014, 247, 915.
-
[15]
[15] Lv, J.; Wang, H.; Gao, H.; Xu, G.; Wang, D.; Chen, Z.; Zhang, X.; Zhang, Z.; Wu, Y. Surf. Coat. Tech. 2015, 261, 356.
-
[16]
[16] Srivastava, M.; Das, A. K.; Khanra, P.; Uddin, M. E.; Kim, N. H.; Lee, J. H. J. Mater. Chem. A 2013, 1(34), 9792.
-
[17]
[17] Al-Kuhaili, M. F.; Durrani, S. M. A.; Bakhtiari, I. A. Appl. Surf. Sci. 2008, 255(5), 3033.
-
[18]
[18] Li, W.; Xie, S.; Li, M.; Ouyang, X.; Cui, G.; Lu, X.; Tong, Y. J. Mater. Chem. A 2013, 1(13), 4190.
-
[19]
[19] Khan, M. M.; Ansari, S. A.; Lee, J.; Ansari, M. O.; Lee, J.; Cho, M. H. J. Colloid Interface Sci. 2014, 431, 255.
-
[20]
[20] Kuang, P.; Su, Y.; Xiao, K.; Liu, Z.; Li, N.; Wang, H.; Zhang, J. ACS Appl. Mater. Interfaces 2015, 7, 16387.
-
[21]
[21] Li, S. J.; Ping, Y.; Yan, J. M.;Wang, H. L.; Wu, M.; Jiang, Q. J. Mater. Chem. A 2015, 3(28), 14535.
-
[22]
[22] Saravanan, R.; Karthikeyan, N.; Gupta, V. K.; Thirumal, E.; Thangadurai, P.; Narayanan, V.; Stephen, A. Mat. Sci. Eng. C 2013, 33(4), 2235.
-
[23]
[23] Weber, W. H.; Hass, K. C.; McBride, J. R. Phys. Rev. B 1993, 48, 178.
-
[24]
[24] Lu, X.; Huang, X.; Xie, S.; Zheng, D.; Liu, Z.; Liang, C.; Tong, Y. Langmuir 2010, 26(10), 7569.
-
[25]
[25] Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Nano Lett. 2012, 12(12), 6464.
-
[26]
[26] Chandrasekharan, N.; Kamat, P. V. J. Phys. Chem. B 2000, 104(46), 10851.
-
[27]
[27] Miao, J.; Yang, H. B.; Khoo, S. Y.; Liu, B. Nanoscale 2013, 5(22), 11118.
-
[28]
[28] Zhang, X.; Li, Y.; Zhao, J.; Wang, S.; Li, Y.; Dai, H.; Sun, X. J. Power Sources 2014, 269, 466.
-
[29]
[29] Pu, Y. C.; Ling, Y.; Chang, K. D.; Liu, C. M.; Zhang, J. Z.; Hsu, Y. J.; Li, Y. J. Phys. Chem. C 2014, 118(27), 15086.
-
[30]
[30] Ling, Y.; Wang, G.; Wang, H.; Yang, Y.; Li, Y. ChemSusChem 2014, 7(3), 848.
-
[31]
[31] Zhang, J.; Wang, L.; Liu, X.; Li, X. A.; Huang, W. J. Mater. Chem. A 2015, 3(2), 535.
-
[32]
[32] Lu, X. H.; Xie, S. L.; Zhai, T.; Zhao, Y. F.; Zhang, P.; Zhang, Y. L.; Tong, Y. X. RSC Adv. 2011, 1(7), 1207.
-
[1]
-
-
[1]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[2]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[3]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[4]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[5]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[6]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[7]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[8]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[9]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[10]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[11]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[12]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[13]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[14]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[15]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[16]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[17]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[18]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[19]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[20]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(618)
- HTML views(81)