Citation: Li Tao, Lu Dan. Shape Characteristics of Complex Single Chain and Aggregation by Exponential Law[J]. Acta Chimica Sinica, ;2016, 74(8): 649-656. doi: 10.6023/A16050252 shu

Shape Characteristics of Complex Single Chain and Aggregation by Exponential Law

  • Corresponding author: Lu Dan, lud@jlu.edu.cn
  • Received Date: 20 May 2016

    Fund Project: the National Natural Science Foundation of China 21174049the National Natural Science Foundation of China 91333103the National Natural Science Foundation of China 21574053

Figures(11)

  • Being an important part of polymer science, the single chain conformation and aggregation structure in polymer solution has been widely studied by many experiential exponential laws. In the review, several kinds of commonly used exponential laws were summarized, and the use in the study of shape characteristics of complex single chain and aggregation was introduced. The aggregation structure and morphology of films can be controlled by precursor solution, so deep understanding to the intrinsic properties of precursor solution is particularly important. Combined with the electron microscope, spectra, etc., the exponential law can be used to further study the single chain, aggregation size and morphology, structure evolution, and the law of the movement process of structure units at all levels in polymer solution, this will lay a theoretical foundation for the molecular designing, functional development and application of polymer materials.
  • 加载中
    1. [1]

      Wu Q. Y.Polymer Condensed Matter Physics, Science Press, Beijing, 2012, pp. 32~44.

    2. [2]

      de Gennes P. E.Scaling Concepts in Polymer Physics, Cornell University Press, New York, 1985.

    3. [3]

      Wu Q. Y.China Plastics 2013, 27(1), 1.

    4. [4]

      Robinson G., Ross-Murphy S. B., Morris, E R. Carbohydr. Res. 1982, 107, 17.  doi: 10.1016/S0008-6215(00)80772-7

    5. [5]

      Teraoka I.Polymer Solutions: An Introduction to Physical Properties, John Wiley & Sons, Inc., New York, 2001, pp. 209~221.

    6. [6]

      Kato T., Okamoto T., Tokuya T., Takahashi A.Biopolymers, 1982, 21:1623.  doi: 10.1002/(ISSN)1097-0282

    7. [7]

      Picton L., Bataille G., Muller G.Carbohydr. Polym., 2000, 42:23.  doi: 10.1016/S0144-8617(99)00139-3

    8. [8]

      Picton L., Merle L., Muller G.Int. J. Polym. Anal. Ch., 1996, 2:103.  doi: 10.1080/10236669608233900

    9. [9]

      Beaucage G.Phys. Rev. E, 2004, 70:031401.

    10. [10]

      Gelade E. T. F., Goderis B., de Koster C. G..; Meijerink N., van Benthem R. A.T. M. Macromolecules, 2001, 34:3552.  doi: 10.1021/ma001266t

    11. [11]

      Scherrenberg R., Coussens B., Van Vliet P., Edouard G., Brackman J., De Brabander E.Macromolecules, 1998, 31:456.  doi: 10.1021/ma9618181

    12. [12]

      Huber K., Witte T., Hollmann J., Keuker-Baumann S. J.Am. Chem. Soc., 2007, 129:1089.  doi: 10.1021/ja063368q

    13. [13]

      Lages S., Michels R., Huber K.Macromolecules, 2010, 43:3027.  doi: 10.1021/ma9027239

    14. [14]

      Carpinti M., Ferri F., Giglio M., Paganini E., Perini U.Phys. Rev. A, 1990, 42:7347.  doi: 10.1103/PhysRevA.42.7347

    15. [15]

      Schärtl W.Light Scattering from Polymer Solutions and Nanoparticle Dispersions, Springer Laboratory, Berlin, 2007.

    16. [16]

      Raspaud E., Lairez D., Adam M., Carton J. P.Macromolecules, 1994, 27:2956.  doi: 10.1021/ma00089a011

    17. [17]

      Peng S. F., Wu C.Macromolecules, , 2001, 34:6795.  doi: 10.1021/ma010376c

    18. [18]

      Roe R. J.Methods of X-ray and Neutron Scattering in Polymer Science, Oxford, New York, 2000.

    19. [19]

      Higgins J. S., Benoit H. C.Polymers and Neutron Scattering, Oxford, New York, 1994.

    20. [20]

      Perahia D., Traiphol R., Bunz U. H.F. J. Chem. Phys., 2002, 117:1827.  doi: 10.1063/1.1486215

    21. [21]

      Wang H., Zhou W., Ho D. L., Winey K. I., Fischer J. E., Glinka C. J., Hobbie E. K.Nano Lett., 2004, 4:1789.  doi: 10.1021/nl048969z

    22. [22]

      Knaapila M., Garamus V. M., Almásy L., Pang J. S., Forster M., Gutacker A., Scherf U., Monkman A. P.J. Phys. Chem. B, 2008, 112:16415.  doi: 10.1021/jp806763d

    23. [23]

      Rong L. X., Wei L. H., Dong B. Z., Hong X. G., Li F. M., Li Z. C.Chin. Phys., 2003, 12:771.  doi: 10.1088/1009-1963/12/7/313

    24. [24]

      Auguin, D.;Gostan, T.;Delsuc, M.-A.; Roumestand, C.C.R.Chimie 2004, 7, 265.  doi: 10.1016/j.crci.2003.10.017

    25. [25]

      Crutchfield, C.A.; Harris, D.J.J.Magn.Reson.2007, 185, 179.  doi: 10.1016/j.jmr.2006.12.004

    26. [26]

      Auge S., Schmit P.-O., Crutchfield C. A., Islam M. T., Harris D. J., Durand E., Clemancey M., Quoineaud A. A., Lancelin J. M., Prigent Y., Taulelle F., Delsuc M. A.J. Phys. Chem. B, 2009, 113:1914.  doi: 10.1021/jp8094424

    27. [27]

      Chari K., Antalek B., Minter J.Phys. Rev. Lett., 1995, 74:3624.  doi: 10.1103/PhysRevLett.74.3624

    28. [28]

      Wu Q. Y.Polymer Physics, Higher Education Press, Beijing, 2011, pp. 17~24.

    29. [29]

      Roubroeks J. P., Mastromauro D. I., Andersson R., Christensen B. E., Åman P.Biomacromolecules, 2000, 1:584.  doi: 10.1021/bm000017+

    30. [30]

      Sato T., Norisuye T., Fujita H.Macromolecules, 1984, 7:6.

    31. [31]

      Li W., Cui S. W., Wang Q.Biomacromolecules, 2006, 7:446.  doi: 10.1021/bm050625v

    32. [32]

      Tao Y. Z., Zhang L. N., Yan F., Wu X. J.Biomacromolecules, 2007, 8:2321.  doi: 10.1021/bm070335+

    33. [33]

      Huang Z. P., Huang Y. N., Li X. B., Zhang L. N.Carbohydr. Polym., 2009, 78:596.  doi: 10.1016/j.carbpol.2009.05.027

    34. [34]

      Li S., Huang Y., Wang S., Xu X. J., Zhang L. N.J. Phys. Chem. B, 2014, 118:668.  doi: 10.1021/jp4087199

    35. [35]

      Voit B. I., Albena L.Chem. Rev., 2009, 109:5924.  doi: 10.1021/cr900068q

    36. [36]

      Mori H., Müller A. H. E., Simon P. F.W. In Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications, Vol. 2, Eds.: Matyjaszewski K., Gnanou Y., Leibler L., Wiley-VCH, Weinheim, Germany, 2007 p.973.

    37. [37]

      Turner S. R., Voit B. I., Mourey T. H.Macromolecules, 1993, 26:4617.  doi: 10.1021/ma00069a031

    38. [38]

      Mourey T. H., Turner S. R., Rubinstein M., Fréchet J. M. J., Hawker C. J., Wooley K. L.Macromolecules, 1992, 25:2401.  doi: 10.1021/ma00035a017

    39. [39]

      Tomalia D. A., Hedstrand D. M., Wilson L. R.In Encyclopedia of Polymers Science, 2nd ed., Wiley, New York, 1990.

    40. [40]

      Isaacson J., Lubensky T. C.J. Phys. Lett., 1980, 41:469.  doi: 10.1051/jphyslet:019800041019046900

    41. [41]

      Daoud M., Joanny J. F.J. Phys. (Les Ulis, Fr.), , 1981, 42:1359.  doi: 10.1051/jphys:0198100420100135900

    42. [42]

      Flory P. J.Principles of Polymer Chemistry, Cornell University, Press, Ithaca, New York, 1953.

    43. [43]

      Luca E. D., Richards R. W., Grillo I., King S. M.J. Polym. Sci. Polom. Phys., 2003, 41:1352.  doi: 10.1002/(ISSN)1099-0488

    44. [44]

      Ioan C. E., Aberle T., Burchard W.Macromolecules, 2000, 33:5730.  doi: 10.1021/ma000282n

    45. [45]

      Hanselmann R., Burchard W., Lemmes R., Schwengers D.Macromol. Chem. Phys., 1995, 196:2259.  doi: 10.1002/macp.1995.021960715

    46. [46]

      Huang L., Zhang L. L., Huang X. N., Li T., Liu B., Lu D. J.Phys. Chem. B., 2014, 118:791.  doi: 10.1021/jp406598x

    47. [47]

      Knaapila M., Almásy L., Garamus V. M., Ramosd M. L., Justino L. L. G., Galbrecht F., Preis E., Scherf U., Burrowsd H. D., Monkmanm A. P.Polymer, 2008, 49:2033.  doi: 10.1016/j.polymer.2008.02.046

    48. [48]

      Papi M., Arcovito G., de, Spirito. M..; Amiconi G.., Bellelli A., Boumis G.Appl. Phys. Lett., 2005, 86:183901.  doi: 10.1063/1.1915526

    49. [49]

      Li Y.C, Chen K.B, Chen H. L., Hsu C. S., Tsao C. S., Chen J. H., Chen S. A.Langmuir, 2006, 22:11009.  doi: 10.1021/la0612769

    50. [50]

      Bauer B. J., Hobbie E. K., Becker M. L.Macromolecules, 2006, 39:2637.  doi: 10.1021/ma0527303

    51. [51]

      Callejas-Fernández J., Ramos J., Forcada J., Moncho-Jordá A. J.Colloid Interface Sci., 2015, 450:310.  doi: 10.1016/j.jcis.2015.03.031

    52. [52]

      Kanai S., Muthukumar M. J.Chem. Phys., 2007, 127:25.

    53. [53]

      Dai S., Tam K. C., Jenkins R. D.Macromolecules, 2000, 33:404.  doi: 10.1021/ma990887n

    54. [54]

      Witten T. A., Sander L. M.Phys. Rev. Lett., 1981, 47:1400.  doi: 10.1103/PhysRevLett.47.1400

    55. [55]

      Witten T. A., Sander L. M.Phys. Rev. B, 1983, 27:5686.  doi: 10.1103/PhysRevB.27.5686

    56. [56]

      Meakin P.Phys. Rev. Lett., 1983, 51:1119.  doi: 10.1103/PhysRevLett.51.1119

    57. [57]

      Meakin P.Phys. Rev. A, 1990, 41:2005.  doi: 10.1103/PhysRevA.41.2005

    58. [58]

      Meakin P.Adv. Colloid Interface Sci., 1988, 28:249.

    59. [59]

      Brown W. D., Ball R. C.J. Phys. A, 1985, 18:517.  doi: 10.1088/0305-4470/18/9/006

    60. [60]

      Vicsek T.Fractal Growth Phenomena, World Scientific, London, 1992.

    61. [61]

      Chen W. N., Zhao Y., Jiang Y., Yan D. D., Han C. C.ChemPhysChem, 2004, 5:1745.  doi: 10.1002/(ISSN)1439-7641

    62. [62]

      Liu X. B., Luo S. K., Ye J., Wu C.Macromolecules, 2012, 45:4830.  doi: 10.1021/ma300629d

    63. [63]

      Hagiwara T., Kumagai H., Nakamura K.Biosci. Biotech. Biochem., 1996, 60:1757.  doi: 10.1271/bbb.60.1757

    64. [64]

      Lin W., Zhou Y. S., Zhao Y., Zhu Q. S., Wu C.Macromolecules, 2002, 35:7407.  doi: 10.1021/ma020372n

    65. [65]

      Liao W., Zhang Y. J., Guan Y., Zhu X. X.Langmuir, 2012, 28:10873.  doi: 10.1021/la3016386

    66. [66]

      Burns J. L., Yan Y. D., Jameson G. J., Biggs S.Langmuir, 1997, 13:6413.  doi: 10.1021/la970303f

    67. [67]

      Li, N.;Li, Y.B.; Wang, X.G.Macromolecules 2011, 44, 8598.  doi: 10.1021/ma200992n

  • 加载中
    1. [1]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    2. [2]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    3. [3]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    4. [4]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    5. [5]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    6. [6]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    7. [7]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    8. [8]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    9. [9]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    10. [10]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    16. [16]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    17. [17]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    18. [18]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    19. [19]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    20. [20]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

Metrics
  • PDF Downloads(0)
  • Abstract views(1119)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return