Citation: Zhao Zigang, Niu Yongqiang, Zhao Yang, Song Qinghua, Xin Ling, Lu Xiaoqing. First-Principles Theory Investigation on Structural and Photoelectronic Properties of Formamidinium Lead Halide Perovskites[J]. Acta Chimica Sinica, ;2016, 74(8): 689-693. doi: 10.6023/A16050245 shu

First-Principles Theory Investigation on Structural and Photoelectronic Properties of Formamidinium Lead Halide Perovskites

  • Corresponding author: Lu Xiaoqing, luxq@upc.edu.cn
  • Received Date: 17 May 2016

    Fund Project: Postgraduate's Innovation Project YCXJ2016084Student's Platform for Innovation and Entrepreneurship Training Program 20151342the National Natural Science Foundation of China 21303266

Figures(5)

  • Formamidinium lead halide perovskites have attracted wide attention as photoelectronic conversion materials due to the high photoelectronic conversion efficiency (PCE), low cost and simple synthetic process. The structural, electronic and optical properties of mixed formamidinium lead halide perovskites FAPbIxCl3-x (FA=NH2CH=NH2+, x=0~3) have been investigated by the first-principles theory. Our results show that FA cations lie along [001] direction in the trigonal FAPbX3 (X=Cl, Br, I). However, the direction is slightly shifted owing to the distortion of PbX6 (X=Cl, I) octahedrons in the mixed FAPbIxCl3-x. The Pb-I bond distances (0.315~0.334 nm) are larger than Pb-Cl bond distances (0.282~0.302 nm). With the increase of I/Cl ratio, the lattice parameters and volumes of FAPbIxCl3-x increase. The FA cations play a crucial role in balancing the crystal structure, but they do not participate into the process of frontier orbital transition directly. They just play the role of charge donors to contribute ca. 0.76 e to PbI3 framework. FAPbIxCl3-x are direct band-gap semiconductors, with the direct bandgap nature at Z (0, 0, 0.5) symmetry point. The valence band maximum (VBM) is composed of antibonding orbitals of I 5p (Cl 3p) and a few Pb 6s orbitals, and the conduction band minimum (CBM) is composed of Pb 6p orbital. There exists a combined covalent and ionic bonding mechanism between Pb and I (Cl) ions. As the I/Cl ratio increases, the band gaps decrease and the absorption spectra are red shifted. FAPbI3 has an ideal band gap of 1.53 eV. It exhibits the superior absorption spectrum especially in the range of 300 nm to 500 nm, which elucidates that FAPbI3 has great potential as the photoelectronic conversion material. Our results could provide theoretical guidance for the experimental design and synthesis of perovskite solar cells.
  • 加载中
    1. [1]

      Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623.  doi: 10.1021/jz4020162

    2. [2]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    3. [3]

      Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591.

    4. [4]

      Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Nature 2013, 499, 316.  doi: 10.1038/nature12340

    5. [5]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.  doi: 10.1126/science.1228604

    6. [6]

      You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T. B.; Chen, C. C.; Lu, S.; Liu, Y.; Zhou, H.; Yang, Y. ACS Nano 2014, 8, 1674.  doi: 10.1021/nn406020d

    7. [7]

      Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584.  doi: 10.1002/adma.201305172

    8. [8]

      Gao, P.; Gratzel, M.; Nazeeruddin, M. K. Energy Environ. Sci. 2014, 7, 2448.  doi: 10.1039/C4EE00942H

    9. [9]

      Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G. Mater. Today 2014, 17, 16.  doi: 10.1016/j.mattod.2013.12.002

    10. [10]

      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.  doi: 10.1021/nl400349b

    11. [11]

      Im, J. H.; Chung, J.; Kim, S. J.; Park, N. G. Nanoscale Res. Lett. 2012, 7, 1.  doi: 10.1186/1556-276X-7-1

    12. [12]

      Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2014, 118, 16458.  doi: 10.1021/jp411112k

    13. [13]

      Lv, S.; Pang, S.; Zhou, Y.; Padture, N. P.; Hu, H.; Wang, L.; Zhou, X.; Zhu, H.; Zhang, L.; Huang, C.; Cui, G. Phys. Chem. Chem. Phys. 2014, 16, 19206.  doi: 10.1039/C4CP02113D

    14. [14]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234.  doi: 10.1126/science.aaa9272

    15. [15]

      Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15.  doi: 10.1016/0927-0256(96)00008-0

    16. [16]

      Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  doi: 10.1103/PhysRevB.13.5188

    17. [17]

      Even, J.; Pedesseau, L.; Jancu, J. M.; Katan, C. J. Phys. Chem. Lett. 2013, 4, 2999.  doi: 10.1021/jz401532q

    18. [18]

      Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. J. Phys. Chem. C 2013, 117, 13902.  doi: 10.1021/jp4048659

    19. [19]

      Goldschmidt, V. M. Naturwissenschaften 1926, 14, 477.  doi: 10.1007/BF01507527

    20. [20]

      Guo, X.; Niu, G.; Wang, L. Acta Chim. Sinica 2014, 73, 211.
       

    21. [21]

      Yao, X.; Ding, Y.; Zhang, X.; Zhao, Y. Acta Phys. Sin. 2015, 64, 38805.

    22. [22]

      McKinnon, N. K.; Reeves, D. C.; Akabas, M. H. J. Gen. Physiol. 2011, 138, 453.  doi: 10.1085/jgp.201110686

    23. [23]

      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photon. 2014, 8, 506.  doi: 10.1038/nphoton.2014.134

    24. [24]

      Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L.; Snaith, H. Energy Environ. Sci. 2014, 7, 982.  doi: 10.1039/c3ee43822h

    25. [25]

      Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. Chem. Mater. 2014, 26, 1485.  doi: 10.1021/cm404006p

    26. [26]

      Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G. Adv. Mater. 2014, 26, 4991.  doi: 10.1002/adma.201401137

    27. [27]

      Yuan, J.; Gao, B.; Wang, W.; Wang, J. Acta Phys.-Chim. Sin. 2015, 31, 1302.

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    4. [4]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    5. [5]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    9. [9]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    10. [10]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    11. [11]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    13. [13]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    14. [14]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    15. [15]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    16. [16]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    20. [20]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

Metrics
  • PDF Downloads(0)
  • Abstract views(3403)
  • HTML views(888)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return