Citation: Huang Min, Xu Chang, Cheng Longjiu. Density Functional Theory Studies of the Binary Systems[BxAl13-x]- (x=0~13)[J]. Acta Chimica Sinica, ;2016, 74(9): 758-763. doi: 10.6023/A16050230 shu

Density Functional Theory Studies of the Binary Systems[BxAl13-x]- (x=0~13)

  • Corresponding author: Cheng Longjiu, clj@ustc.edu
  • Received Date: 11 May 2016

    Fund Project: National Natural Science Foundation of China 21273008National Natural Science Foundation of China 21573001

Figures(5)

  • In this paper, the global minimum search and structural optimization for the B-Al binary clusters [BxAl13-x]- (x=0~13) are performed using the genetic algorithm (GA) method coupled with density functional theory (DFT). The effects of composition on the atomic structures, electronic properties including the energy gaps and vertical detachment energies of B-Al binary clusters are discussed. The results distinctly reveal a three dimensional (3D) to (quasi-)planar (2D) structural transition as a function of x upon increasing the number of boron atoms. When x is in the range of 0 to 7, the clusters are Al-rich and the B-Al binary systems maintain the 3D structure. Whereas, the binary system trends to be quasi-planar structure, and the critical B:Al ratios for the 2D-3D transition are between x=7 and 8. To study the stability of the [BxAl13-x]- clusters, we defined the relative energy (Erel=E([BxAl13-x]-)-xE(B13-)/13–yE(Al13-)/13), where the cluster with a more negative Erel is more stable. At x=1, Erel is the most negative, indicating the highest stability. In order to further understand the stability of clusters, the vertical detachment energies (VDE) and the HOMO-LUMO energy gaps (EH-L) of [BxAl13-x]- (x=0~13) clusters are also calculated. The results show that the energy decreases with the increasing number of B atoms, indicating a lower stability. The largest EH-L of BAl12- cluster indicates that it is the most stable among all the series of this clusters. Molecular orbitals (MO) of BAl12- cluster are analyzed and the result shows that the electronic shells of 1s2 and 1p6 are virtually unchanged when the central Al atom is replaced by the B atom. It also indicates that the electron shell closing model could be regarded as a simple but valid tool for explaining the structures and stabilities of metal clusters. Chemical bonding analysis by Adaptive Natural Density Partitioning (AdNDP) method for the B13- cluster reveals that it is a π-antiaromatic system with 8 delocalized π-electrons.
  • 加载中
    1. [1]

      Yuan, Y.; Cheng, L.-J. J. Chem. Phys. 2012, 137, 044308.  doi: 10.1063/1.4738957

    2. [2]

      Kiran, B.; Gopa Kumar, G.; Nguyen, M. T.; Kandalam, A. K.; Jena, P. Inorg. Chem. 2009, 48, 9965.  doi: 10.1021/ic901410h

    3. [3]

      Aguado, A.; López, J. M. J. Chem. Phys. 2009, 130, 064704.  doi: 10.1063/1.3075834

    4. [4]

      Zhai, H.-J.; Zhao, Y.-F.; Li, W.-L.; Chen, Q.; Bai, H.; Hu, H.-S.; Piazza, Z. A.; Tian, W.-J.; Lu, H.-G.; Wu, Y.-B. Nat. Chem. 2014, 6, 727.

    5. [5]

      Li, L.; Xu, C.; Jin, B.-K.; Cheng, L.-J. J. Chem. Phys. 2013, 139, 174310.  doi: 10.1063/1.4827517

    6. [6]

      Li, L.; Xu, C.; Cheng, L.-J. Comput. Theor. Chem. 2013, 1021, 144.  doi: 10.1016/j.comptc.2013.07.001

    7. [7]

      Deshpande, M.; Kanhere, D.; Vasiliev, I.; Martin, R. M. Phys. Rev. B 2003, 68, 035428.  doi: 10.1103/PhysRevB.68.035428

    8. [8]

      Wang, L.; Zhao, J.-J.; Wang, Y.-J.; Gong, Z.-Z.; Guo, Y.-X.; Wei, D.-Q. J. At. Mol. Phys. 2007, 24, 559 (in Chinese).
       

    9. [9]

      Liu, L.-R.; Lei, X.-L.; Chen, H.; Zhu, H.-J. Acta Phys. Sin. 2009, 58, 5355 (in Chinese).
       

    10. [10]

      Lei, X.-L.; Zhu, H.-J.; Wang, X.-M.; Luo, Y.-H. Acta Phys.-Chim. Sin. 2008, 24, 1655 (in Chinese).
       

    11. [11]

      Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H.-J.; Wang, L.-S. Coord. Chem. Rev. 2006, 250, 2811.  doi: 10.1016/j.ccr.2006.03.032

    12. [12]

      Zhai, H.-J.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L.-S. Angew. Chem., Int. Ed. 2003, 42, 6004.  doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Popov, I. A.; Popov, V. F.; Bozhenko, K. V.; Černušák, I.; Boldyrev, A. I. J. Chem. Phys. 2013, 139, 114307.  doi: 10.1063/1.4820878

    14. [14]

      Galeev, T. R.; Ivanov, A. S.; Romanescu, C.; Li, W.-L.; Bozhenko, K. V.; Wang, L.-S.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2011, 13, 8805.  doi: 10.1039/c1cp20359b

    15. [15]

      Kawamata, H.; Negishi, Y.; Nakajima, A.; Kaya, K. Chem. Phys. Lett. 2001, 337, 255.  doi: 10.1016/S0009-2614(01)00198-1

    16. [16]

      Zhu, Z. Z.; Bo, T. Solid State Commun. 1998, 108, 891.  doi: 10.1016/S0038-1098(98)00400-1

    17. [17]

      Ashman, C.; Khanna, S.; Liu, F.; Jena, P.; Kaplan, T.; Mostoller, M. Phys. Rev. B 1997, 55, 15868.  doi: 10.1103/PhysRevB.55.15868

    18. [18]

      Burgert, R.; Stokes, S. T.; Bowen, K. H.; Schnöckel, H. J. Am. Chem. Soc. 2006, 128, 7904.  doi: 10.1021/ja060613x

    19. [19]

      Jung, J.; Kim, J. C.; Han, Y.-K. Phys. Rev. B 2005, 72, 155439.  doi: 10.1103/PhysRevB.72.155439

    20. [20]

      Li, C.-L.; Duan, H.-M.; Mardan, K. Acta Phys. Sin. 2013, 19, 178 (in Chinese).
       

    21. [21]

      Bergeron, D.; Roach, P.; Castleman, A.; Jones, N.; Khanna, S. Science 2005, 307, 231.  doi: 10.1126/science.1105820

    22. [22]

      Bergeron, D. E.; Castleman, A. W.; Morisato, T.; Khanna, S. N. Science 2004, 304, 84.  doi: 10.1126/science.1093902

    23. [23]

      Li, S. F.; Gong, X. G. Phys. Rev. B 2004, 70, 075404.

    24. [24]

      Zope, R. R.; Baruah, T. Phys. Rev. A 2001, 64, 053202.  doi: 10.1103/PhysRevA.64.053202

    25. [25]

      Gong, X. G.; Kumar, V. Phys. Rev. Lett. 1993, 70, 2078.  doi: 10.1103/PhysRevLett.70.2078

    26. [26]

      Li, X.; Wang, L.-S. Phys. Rev. B 2002, 65, 153404.  doi: 10.1103/PhysRevB.65.153404

    27. [27]

      Pal, R.; Cui, L.-F.; Bulusu, S.; Zhai, H.-J.; Wang, L.-S.; Zeng, X. C. J. Chem. Phys. 2008, 128, 024305.  doi: 10.1063/1.2805386

    28. [28]

      Wang, L.; Zhao, J.-J.; Zhou, Z.; Zhang, S. B.; Chen, Z.-F. J. Comput. Chem. 2009, 30, 2509.  doi: 10.1002/jcc.v30:15

    29. [29]

      Tang, D.-Y.; Huang, X.-N.; Zou, T.; Jin, C.; Hu, J.-P.; Fu, Q.-C. Acta Phys.-Chim. Sin. 2010, 26, 34 (in Chinese).
       

    30. [30]

      Tang, D.-Y.; Jin, C.; Zou, T.; Huang, X.-N. Acta Chim. Sinica 2009, 67, 1539 (in Chinese).
       

    31. [31]

      Lei, X.-L. J. Clust. Sci. 2011, 22, 159.  doi: 10.1007/s10876-011-0370-x

    32. [32]

      Tang, X.; Lȕ, H.-F.; Ma, C.-L.; Zhao, J.-J.; Zhang, Q.-Y. Acta Phys. Sin. 2008, 57, 7806 (in Chinese).
       

    33. [33]

      Zhao, J.-J.; Buldum, A.; Han, J.; Lu, J. P. Phys. Rev. Lett. 2000, 85, 1706.  doi: 10.1103/PhysRevLett.85.1706

    34. [34]

      Ran, R.-X.; Fan, X.-L.; Liu, Y.; Yang, Y.-L. Acta Chim. Sinica 2013, 71, 829 (in Chinese).  doi: 10.6023/A13010083
       

    35. [35]

      Cheng, L.-J. J. Chem. Phys. 2012, 136, 104301.  doi: 10.1063/1.3692183

    36. [36]

      Li, L.-F.; Cheng, L.-J. J. Chem. Phys. 2013, 138, 094312.  doi: 10.1063/1.4793707

    37. [37]

      Tian, Z.-M.; Cheng, L.-J. Phys. Chem. Chem. Phys. 2015, 17, 13421.  doi: 10.1039/C5CP01863C

    38. [38]

      Zhao, J.-J.; Shi, R.-L.; Sai, L.-W.; Huang, X.-M.; Su, Y. Mol. Simulat. 2016, 42, 809.  doi: 10.1080/08927022.2015.1121386

    39. [39]

      Frisch, M.; Trucks, G.; Schlegel, H. B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Gaussian Inc., Wallingford, CT, 2009.

    40. [40]

      Varetto, U. MOLEKEL, 5.4.0.8, Swiss National Supercomputing Centre, Manno, Switzerland, 2009.

    41. [41]

      Hong, L.; Wang, H.-L.; Cheng, J.-X.; Huang, X.-M.; Sai, L.-W.; Zhao, J.-J. Comput. Theor. Chem. 2012, 993, 36.  doi: 10.1016/j.comptc.2012.05.027

    42. [42]

      Smith, J. C.; Reber, A. C.; Khanna, S. N.; Castleman Jr., A. W. J. Phys. Chem. A 2014, 118, 8485.  doi: 10.1021/jp501934t

    43. [43]

      Zhang, M.; Zhang, J.; Feng, X.; Zhang, H.; Zhao, L.; Luo, Y.; Cao, W. J. Phys. Chem. A 2013, 117, 13025.  doi: 10.1021/jp410489g

    44. [44]

      Gu, J.-B.; Yang, X.-D.; Wang, H.-Q.; Li, H.-F. Chinese Phys. B 2012, 21, 043102.  doi: 10.1088/1674-1056/21/4/043102

    45. [45]

      Cheng, L.-J.; Zhang, X.-Z.; Jin, B.-K.; Yang, J.-L. Nanoscale 2014, 6, 12440.  doi: 10.1039/C4NR03550J

    46. [46]

      Zhai, H.-J.; Kiran, B.; Li, J.; Wang, L.-S. Nat. Mater. 2003, 2, 827.  doi: 10.1038/nmat1012

    47. [47]

      Zubarev, D. Y.; Boldyrev, A. I. J. Org. Chem. 2008, 73, 9251.  doi: 10.1021/jo801407e

    48. [48]

      Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207.  doi: 10.1039/b804083d

    49. [49]

      Zubarev, D. Y.; Boldyrev, A. I. J. Phys. Chem. A 2008, 113, 866.

    50. [50]

      Pick, Š. Collect. Czech. Chem. 1988, 53, 1607.  doi: 10.1135/cccc19881607

    51. [51]

      Figeys, H. Tetrahedron 1970, 26, 5225.  doi: 10.1016/S0040-4020(01)98731-9

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    5. [5]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    9. [9]

      Hui Li Wei Cheng Meng Yu Yi Li . Improving Postgraduate Cultivation in Chemistry Discipline: A Case Study of the Chemistry Program in Jilin University. University Chemistry, 2024, 39(6): 17-22. doi: 10.3866/PKU.DXHX202403047

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    17. [17]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    20. [20]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

Metrics
  • PDF Downloads(0)
  • Abstract views(953)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return