Sulfur Dioxide Promotes the Formation of Amyloid Fibrils through Enhanced Secondary Nucleation: A Molecular Dynamics Study
- Corresponding author: Kang Wenbin, wbkang@hbmu.edu.cn Wang Jun, wbkang@hbmu.edu.cn Wang Wei, wangwei@nju.edu.cn
Citation: Kang Wenbin, Xia Yun, Wang Jun, Wang Wei. Sulfur Dioxide Promotes the Formation of Amyloid Fibrils through Enhanced Secondary Nucleation: A Molecular Dynamics Study[J]. Acta Chimica Sinica, ;2016, 74(8): 694-702. doi: 10.6023/A16050216
Dominici, F.; Greenstone, M.; Sunstein, C. Science 2014, 344, 257.
doi: 10.1126/science.1247348
Wang, Y.; Hu, M. Acta Chim. Sinica 2016, 74, 356 (in Chinese).
doi: 10.6023/A16010008
Guo, S.; Hu, M.; Guo, Q.; Shang, D. Acta Chim. Sinica 2014, 72, 658 (in Chinese).
doi: 10.6023/A14040254
Guo, S.; Hu, M.; Shang, D.; Guo, Q. Acta Chim. Sinica 2014, 72, 145 (in Chinese).
doi: 10.6023/A13111169
Li, J.; Meng, Z. Asian J. Ecotoxicol. 2012, 7, 133 (in Chinese).
Yao, G.; Sang, N. Chin. J. Appl. Environ. Biol. 2015, 21, 372 (in Chinese).
Yu, F.; Li, D.; Xie, M. Ecol. Sci. 2016, 35, 195 (in Chinese).
Ma, Y.; Wang, J. Chin. J. Publ. Health 2011, 27, 800 (in Chinese).
Wu, Y.; Meng, Q.; Wei, D.; Bai, J. Chin. Bull. Life Sci. 2011, 23, 784 (in Chinese).
Zhao, D.; Tang, W.; Wang, W. J. Int. Neurology and Neurosurgery 2014, 41, 363 (in Chinese).
Zuo, G. e-Sci. Technol. & Appl. 2011, 2, 63 (in Chinese).
Du, J.; Ge, C. Chin. Sci. Bull. 2015, 60, 2977 (in Chinese).
Wang, G.; Wang, P. Sci. Technol. Rev. 2014, 32, 72 (in Chinese).
Yang, W.; Bai, Z.; Zhou, X. J. Environ. Health 2015, 32, 753 (in Chinese).
Li, J.; Meng, Z. Nitric Oxide 2009, 20, 166.
doi: 10.1016/j.niox.2008.12.003
Wang, X.; Jin, H.; Tang, C. Eur. J. Pharmacol. 2011, 670, 1.
doi: 10.1016/j.ejphar.2011.08.031
Liu, D.; Huang, Y.; Bu, D. Cell Death Dis. 2014, 5, e1251.
doi: 10.1038/cddis.2014.229
Huang, Y.; Shen, Z.; Chen, Q. Sci. Rep. 2016, 6, 19503.
doi: 10.1038/srep19503
Duff, K.; Eckman, C.; Zehr, C. Nature 1996, 383, 710.
doi: 10.1038/383710a0
Cook, D.; Forman, M.; Sung, J. Nat. Med. 1997, 3, 1021.
doi: 10.1038/nm0997-1021
Knowles, T.; Waudby, C.; Devlin, G. Science 2009, 326, 1533.
doi: 10.1126/science.1178250
Bloom, G. JAMA Neurology 2014, 71, 505.
doi: 10.1001/jamaneurol.2013.5847
Xi, W.; Li, W.; Wang, W. J. Phys. Chem. B 2012, 116, 7398.
doi: 10.1021/jp300389g
Xi, W.; Li, W.; Wang, W. Chin. Phys. Lett. 2012, 29, 088702.
doi: 10.1088/0256-307X/29/8/088702
Li, W.; Zhang, J.; Su, Y.; Wang, J.; Qin, M.; Wang, W. J. Phys. Chem. B 2007, 111, 13814.
doi: 10.1021/jp076213t
Lührs, T.; Ritter, C.; Adrian, M. Proc. Natl. Acad. Sci. 2005, 102, 17342.
doi: 10.1073/pnas.0506723102
Ribeiro, M. J. Phys. Chem. B 2006, 110, 8789.
doi: 10.1021/jp060518a
Moin, S.; Lim, L.; Hofer, T. Inorg. Chem. 2011, 50, 3379.
doi: 10.1021/ic102240p
Berendsen, H.; Postma, J.; Gunsteren, W. Intermolecular Forces, Springer Netherlands, 1981, pp. 331~342.
Ketko, M.; Kamath, G.; Potoff, J. J. Phys. Chem. B 2011, 115, 4949.
doi: 10.1021/jp2010524
Li, Z.; Guo, X.; Wang, H. Acta Phys.-Chim. Sinica 2009, 25, 6 (in Chinese).
He, Z.; Zhou, J. Acta Chim. Sinica 2011, 69, 2901 (in Chinese).
Izrailev, S.; Stepaniants, S.; Isralewitz, B. Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin Heidelberg, 1999, pp. 39~65.
Park, S.; Khalili-Araghi, F.; Tajkhorshid, E. J. Chem. Phys. 2003, 119, 3559.
doi: 10.1063/1.1590311
Justin, A.; David, R. J. Phys. Chem. B 2010, 114, 1652.
doi: 10.1021/jp9110794
Park, S.; Schulten, K. J. Chem. Phys. 2004, 120, 5946.
doi: 10.1063/1.1651473
Patey, G.; Valleau, J. Chem. Phys. Lett. 1973, 21, 297.
doi: 10.1016/0009-2614(73)80139-3
Torrie, G.; Valleau, J. Chem. Phys. Lett. 1974, 28, 578.
doi: 10.1016/0009-2614(74)80109-0
Torrie, G.; Valleau, J. J. Comput. Phys. 1977, 23, 187.
doi: 10.1016/0021-9991(77)90121-8
Kumar, S.; Rosenberg, J.; Bouzida, D. J. Comput. Chem. 1992, 13, 1011.
doi: 10.1002/(ISSN)1096-987X
Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; de Groot, B. L.; Grubmuller, H. J. Comput. Chem. 2015, 36, 1990.
doi: 10.1002/jcc.24030
Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.
doi: 10.1063/1.464397
Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.; Pedersen, L. J. Chem. Phys. 1995, 103, 8577.
doi: 10.1063/1.470117
Hess, B.; Bekker, H.; Berendsen, H. J. Comput. Chem. 1997, 18, 1463.
doi: 10.1002/(ISSN)1096-987X
Walton, E.; Lee, S.; Van, V. Biophys. J. 2008, 94, 2621.
doi: 10.1529/biophysj.107.114454
Calderón-Garcidueñas, L.; Mora-Tiscareño, A.; Franco-Lira, M. J. Alzheimers Dis. 2015, 45, 757.
Calderón-Garcidueñas, L.; Vojdani, A.; Blaurock-Busch, E. J. Alzheimers Dis. 2015, 43, 1039.
Li, P.; Yan, R.; Yu, S. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 2739.
doi: 10.1073/pnas.1502596112
Radic, S.; Nedumpully-Govindan, P.; Chen, R.; Salonen, E.; Brown, J. M.; Ke, P. C.; Ding, F. Nanoscale 2014, 6, 8340.
doi: 10.1039/c4nr01544d
Truong, L. Ph.D. Dissertation, Oregon State University, Oregon, 2012.
Violi, A.; Venkatnathan, A. J. Chem. Phys. 2006, 125, 054302.
doi: 10.1063/1.2234481
Kim, H.; Shin, Y. J. Am. Chem. Soc. 2010, 132, 2254.
doi: 10.1021/ja908477w
Risom, L.; Møller, P.; Loft, S. Mutat. Res. 2005, 592, 119.
doi: 10.1016/j.mrfmmm.2005.06.012
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
Lin Ding , Jinpeng Zhang , Junfeng Li , Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271