Citation: Liu Xingfen, Wang Yateng, Huang Yanqin, Feng Xiaomiao, Fan Quli, Huang Wei. Highly Sensitive Protein Biosensor based on a Conjugated Polymer Brush[J]. Acta Chimica Sinica, ;2016, 74(8): 664-668. doi: 10.6023/A16040205 shu

Highly Sensitive Protein Biosensor based on a Conjugated Polymer Brush

  • Corresponding author: Liu Xingfen, iamxfliu@njupt.edu.cn
  • Received Date: 25 April 2016

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20141424Research Program of Nanjing University of Posts and Telecommunications NY215171Program of Scientific Innovation Research of College Graduate in Jiangsu Province CXLX12_0792the National Natural Science Foundation of China 51173080the Ministry of Education of China IRT1148the National Natural Science Foundation of China 21005040the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) BK20141424the National Basic Research Program of China 2012CB933301the National Basic Research Program of China 2012CB723402

Figures(5)

  • Simple and sensitive detection of proteins is crucial in biological analysis and medical diagnosis. Conjugated polymers (CPs) with π-conjugated backbones were recognized as having excellent light-harvesting capability and high fluorescent quantum yield. They have been widely used as an energy donor to amplify fluorescence signal via high efficient Föster resonance energy transfer (FRET). In particular, conjugated polymer brush with high charge density provides more possibilities due to stronger electrostatic interactions with negatively charged biomolecules. Here, we developed a highly sensitive protein biosensor for thrombin detection based on a conjugated polymer brush (PFNI) and a fluorescein-labeled aptamer (FAM-apt15). PFNI is a water-soluble cationic polyfluorene derivate with extremely high charge density (78 positive charges per repeat unit). PFNI can attract negatively charged aptamer through strong electrostatic interactions. In this case, the energy donor (PFNI) and acceptor (FAM) are in a close proximity, which results in an efficient FRET process and a high FRET signal. However, when the FAM-apt15 combines with the target protein, a rigid and big-sized G-quadruplex/thrombin complex formed. Due to the steric hindrance from the densely brush of PFNI, the distance between the two fluorophores increased significantly, leading to an inefficient FRET process and a low FRET signal. The strategy exhibits excellent specificity and the limit of detection (LOD) for thrombin in buffer was estimated to be 0.05 nmol/L. It also works well in diluted serum and a LOD of 0.2 nmol/L can be obtained. Compared to the biosensors based on traditional linear conjugated polymers, the sensitivity was improved by one order of magnitude. In addition, our strategy also shows the merits of simple, label-free, and low-cost because labeled DNA is much more expensive than unlabeled one. Based on the specific binding of aptamer and protein, this novel method can be extended to a highly sensitive detection of more proteins.
  • 加载中
    1. [1]

      Cera, E. D.; Dang, Q. D.; Ayala, Y. M. Cell Mol. Life Sci. 1997, 53, 701.  doi: 10.1007/s000180050091

    2. [2]

      Maragoudakis, M. E.; Tsopanoglou, N. E.; Andriopoulou, P. Biochem. Soc. T. 2002, 30, 173.  doi: 10.1042/bst0300173

    3. [3]

      Liu, C. W.; Huang, C. C.; Chang, H. T. Anal. Chem. 2009, 81, 2383.  doi: 10.1021/ac8022185

    4. [4]

      Song, W.; Zhang, Q.; Xie, X.; Zhang, S. Biosens. Bioelectron. 2014, 61, 51.  doi: 10.1016/j.bios.2014.04.030

    5. [5]

      Pavlov, V.; Xiao, Y.; Shlyahovsky, B.; Willner, I. J. Am. Chem. Soc. 2004, 126, 11768.  doi: 10.1021/ja046970u

    6. [6]

      Liang, H. R.; Hu, G. Q.; Xue, X. H.; Li, L.; Zheng, X. X.; Gao, Y. W.; Yang, S. T.; Xia, X. Z. Virus Res. 2014, 184, 7.  doi: 10.1016/j.virusres.2014.01.021

    7. [7]

      Kim, Y. S.; Song, M. Y.; Jurng, J.; Kim, B. C. Anal. Biochem. 2013, 436, 22.  doi: 10.1016/j.ab.2013.01.014

    8. [8]

      Cao, H. Y.; Yuan, A. H.; Shi, X. S.; Chen, W.; Miao, Y. Oncol. Rep. 2014, 32, 2054.

    9. [9]

      Song, Q. W.; Peng, M. S.; Wang, L.; He, D. C.; Ouyang, J. Biosens. Bioelectron. 2016, 77, 237.  doi: 10.1016/j.bios.2015.09.008

    10. [10]

      Neves Miguel, A. D.; Blaszykowski, C.; Thompson, M. Anal. Chem. 2016, 88, 3098.  doi: 10.1021/acs.analchem.5b04010

    11. [11]

      Jiang, L. Y.; Xiao, X. N.; Zhou, P. L.; Zhang, P.; Yan, Y. X.; Jiang, S. X.; Chen, Q. H. Chinese J. Anal. Chem. 2016, 44, 310.

    12. [12]

      Ge, J.; Liu, Z. F.; Zhao, X. S. Chinese J. Chem. 2012, 30, 2023.  doi: 10.1002/cjoc.201200256

    13. [13]

      Zhang, S. B.; Zheng, L. Y.; Hu, X.; Shen, G. Y.; Liu, X. W.; Shen, G. L.; Yu, R. Q. Chinese J. Anal. Chem. 2015, 43, 1688.  doi: 10.1016/S1872-2040(15)60880-5

    14. [14]

      Wu, C.; Yang, S. Y.; Wu, Z. Y.; Shen, G. L.; Yu, R. Q. Acta Chim. Sinica 2013, 71, 367.  doi: 10.6023/A12110962
       

    15. [15]

      He, F.; Tang, Y. L.; Wang, S.; Li, Y. L.; Zhu, D. B. J. Am. Chem. Soc. 2005, 127, 12343.  doi: 10.1021/ja051507i

    16. [16]

      Chen, Z. B.; Tan, L. L.; Hu, L. Y.; Zhang, Y. M.; Wang, S. X.; Lv, F. Y. ACS Appl. Mater. Inter. 2016, 8, 102.  doi: 10.1021/acsami.5b08975

    17. [17]

      Liu, X. F.; Shi, L.; Hua, X. X.; Fan, Q. L.; Chao, J.; Su, S.; Huang, Y. Q.; Wang, L. H.; Huang, W. ACS Appl. Mater. Inter. 2015, 7, 16458.  doi: 10.1021/acsami.5b03662

    18. [18]

      Kong, L.; Xu, J.; Xu, Y.; Xiang, Y.; Yuan, R.; Chai, Y. Biosens. Bioelectron. 2013, 42, 193.  doi: 10.1016/j.bios.2012.10.064

    19. [19]

      Chen, Z. B.; Tan, Y.; Zhang, C. M.; Yin, L.; Ma, H.; Ye, N. S.; Qiang, H.; Lin, Y. Q. Biosens. Bioelectron. 2014, 56, 46  doi: 10.1016/j.bios.2014.01.012

    20. [20]

      Baek, S. H.; Wark, A. W.; Lee, H. J. Anal. Chem. 2014, 86, 9824.  doi: 10.1021/ac5024183

    21. [21]

      Jiang, C. N.; Liang, A. H.; Jiang, Z. L. Acta Chim.Sinica 2011, 69, 713.
       

    22. [22]

      Le Floch, F.; Ho, H. A.; Leclerc, M. Anal. Chem. 2006, 78, 4727.  doi: 10.1021/ac0521955

    23. [23]

      Zhao, J.; Hu, S. S.; Zhong, W. D.; Wu, J. G.; Shen, Z. M.; Chen, Z.; Li. G. X. ACS Appl. Mater. Inter. 2014, 6, 7070.  doi: 10.1021/am502053d

    24. [24]

      Liu, L. Z.; Liu, Z. H.; He, Z. K.; Cai, R. X. Prog. Chem. 2006, 18, 337.

    25. [25]

      Huang, F.; Wu, H. B.; Cao, Y. Chem. Soc. Rev. 2010, 39, 2500.  doi: 10.1039/b907991m

    26. [26]

      Wang, M.; Li, C. H.; Lv, A. F.; Wang, Z. H.; Bo, Z. S. Macromolecules 2012, 45, 3017.  doi: 10.1021/ma202752h

    27. [27]

      Thomas, S. W.; Joly, G. D.; Swagger, T. M. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    28. [28]

      Rochat, S.; Swagger, T. M. ACS Appl. Mater. Inter. 2013, 5, 4488.  doi: 10.1021/am400939w

    29. [29]

      Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Chem. Rev. 2012, 112, 4687.  doi: 10.1021/cr200263w

    30. [30]

      Wang, M. F.; Zou, S.; Guerin, G. Macromolecules 2008, 41, 6993  doi: 10.1021/ma800777m

    31. [31]

      Pu, K. Y.; Li, K.; Liu, B. Adv. Funct. Mater. 2010, 20, 2770.  doi: 10.1002/adfm.201000495

    32. [32]

      Zhang, Z. Y.; Lu, X. M.; Fan, Q. L.; Hu, W. B.; Huang, W. Polym. Chem. 2011, 2, 2369.  doi: 10.1039/c1py00213a

    33. [33]

      Liu, X. F.; Shi, L.; Zhang, Z. Y.; Fan, Q. L.; Huang, Y. Q.; Su, S.; Fan, C. H.; Wang, L. H.; Huang, W. Analyst 2015, 140, 1842.  doi: 10.1039/C4AN02384F

    34. [34]

      Hu, W. B.; Lu, X. M.; Jiang, R. C.; Fan, Q. L.; Zhao, H.; Deng, W. X.; Zhang, L.; Huang, L.; Huang, W. Chem. Commun. 2013, 49, 9012.  doi: 10.1039/c3cc45400b

    35. [35]

      Jiang, R. C.; Lu, X. M.; Yang, M. H.; Deng, W. X.; Fan, Q. L.; Huang, W. Biomacromolecules 2013, 14, 3643.  doi: 10.1021/bm401000x

    36. [36]

      Zhang, Z. Y. Ph.D. Dissertation, Nanjing University of Posts and Telecommunications, Nanjing, 2014.

    37. [37]

      Zhang, L. B.; Zhu, J. B.; Li, T.; Wang, E. K. Anal. Chem. 2011, 83, 8871.  doi: 10.1021/ac2006763

    38. [38]

      Golub, E.; Freeman, R.; Willner, I. Anal. Chem. 2013, 85, 12126.  doi: 10.1021/ac403305k

    39. [39]

      Lin, Z. H.; Pan, D.; Hu, T. Y.; Liu, Z. P.; Su, X. G. Microchim. Acta 2015, 182, 1933.  doi: 10.1007/s00604-015-1526-4

    40. [40]

      Yang, X. H.; Wang, S. F.; Wang, K. M.; Luo, X. M.; Tan, W. H.; Cui, L. Chem. J. Chinese Univ. 2009, 30, 899.

    41. [41]

      Wang, Y. Y.; Liu, B. Langmuir 2009, 25, 12787.  doi: 10.1021/la901703p

    42. [42]

      Liu, X. F.; Shi, L.; Hua, X. X.; Huang, Y. Q.; Su, S.; Fan, Q. L.; Wang, L. H.; Huang, W. ACS Appl. Mater. Inter. 2014, 6, 3406.  doi: 10.1021/am405550j

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(764)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return