Citation: Zhu Benzhan, Shao Bo, Mao Li, Gao Huiying. Intrinsic Chemiluminescence Production during Environmentally-friendly Advanced Oxidation of Halogenated Aromatics and Its Applications[J]. Acta Chimica Sinica, ;2016, 74(7): 557-564. doi: 10.6023/A16040178 shu

Intrinsic Chemiluminescence Production during Environmentally-friendly Advanced Oxidation of Halogenated Aromatics and Its Applications

  • Corresponding author: Zhu Benzhan, bzhu@rcees.ac.cn
  • Received Date: 11 April 2016
    Revised Date: 23 May 2016

    Fund Project: National Natural Science Foundation of China 21577149Strategic Priority Research Program of CAS XDB01020300National Natural Science Foundation of China 21321004Open Foundation from State Key Laboratory of Environmental Chemistry and Ecotoxicology KF2012-09National Natural Science Foundation of China 21477139National Natural Science Foundation of China 21237005

Figures(7)

  • Haloaromatics (XAr) have been widely used as pesticides, personal care agents, pharmaceuticals and flame retardants, which are now ubiquitously present in our environment. The carcinogenicity coupled with their ubiquitous occurrence have raised public concerns on the potential risks to both human health and the ecosystem posed by XAr. Advanced oxidation processes (AOPs) have been increasingly employed as an "environmentally-friendly" technology for remediating such highly toxic and recalcitrant XAr. During these AOPs systems, the most reactive radical intermediate formed at near-ambient temperature and pressure is the hydroxyl radical (·OH). Recently, we found that an intrinsic chemiluminescence can be generated during the advanced oxidation of the priority pollutant pentachlorophenol and all other XAr. Furtherly, by the complementary application of electron spin resonance (ESR) with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin-trapping agent, fluorescence method with terephthalic acid (TPA) as the ·OH probe, chemiluminescence analysis in the presence of classic ·OH scavengers and several typical ·OH-generating systems, the chemiluminescence was confirmed to be directly dependent on the production of the extremely reactive ·OH. Further studies showed that halogenated quinoid intermediates were produced during the degradation of XAr by ·OH-generating system, which could produce weak chemiluminescence that was greatly enhanced by addition of extra ·OH. We proposed that this unusual chemiluminescence generation was due to hydroxyl radical-dependent production of halogenated quinoid intermediates and electronically excited carbonyl species. In addition, the time course of chemiluminescence emission correlated well with the degradation of XAr: when the degradation level of XAr reached the maximum, no further chemiluminescence emission could be observed. Based on these findings, we developed a rapid, sensitive, simple, and effective chemiluminescence method to not only measure trace amount of XAr, but also monitor their real-time degradation kinetics. These new findings may have broad chemical, pharmaceutical, toxicological and environmental implications for future studies on remediation of these halogenated persistent organic pollutants by AOPs.
  • 加载中
    1. [1]

      Zhu, B. Z.; Shan, G. Q. Chem. Res. Toxicol. 2009, 22, 969.  doi: 10.1021/tx900030v

    2. [2]

      Zhu, B. Z.; Zhu, J. G.; Fan, R. M.; Mao, L. Adv. Mol. Toxicol. 2011, 5, 1.  doi: 10.1016/B978-0-444-53864-2.00001-3

    3. [3]

      Zhu, B. Z. Chin. Sci. Bull. 2009, 54, 1673.  doi: 10.1360/972009-142

    4. [4]

      Dann, A. B.; Hontela, A. J. Appl. Toxicol. 2010, 31, 285.

    5. [5]

      de Wit, C. A. Chemosphere 2002, 46, 583.  doi: 10.1016/S0045-6535(01)00225-9

    6. [6]

      Ramamoorthy, S. Chlorinated Organic Compounds in the Environment: Regulatory and Monitoring Assessment, CRC Press, Boca Raton, FL, 1997.

    7. [7]

      Fang, X. W.; Schuchmann, H. P.; von Sonntag, C. J. Chem. Soc. Perkin. Trans. 2000, 2, 1391.

    8. [8]

      Zimbron, J. A.; Reardon, K. F. Water. Res. 2009, 43, 1831.  doi: 10.1016/j.watres.2009.01.024

    9. [9]

      Lan, Q.; Li, F.; Liu, C.; Li, X. Z. Environ. Sci. Technol. 2008, 42, 7918.  doi: 10.1021/es801220n

    10. [10]

      Gupta, S. S.; Stadler, M.; Noser, C. A.; Ghosh, A.; Steinhoff, B.; Lenoir, D.; Horwitz, C. P.; Schramm, K. W.; Collins, T. J. Science 2002, 296, 326.  doi: 10.1126/science.1069297

    11. [11]

      Sorokin, A.; Seris, J. L.; Meunier, B. Science 1995, 268, 1163.  doi: 10.1126/science.268.5214.1163

    12. [12]

      Zhang, H.; Huang, C. H. Environ. Sci. Technol. 2003, 37, 2421.  doi: 10.1021/es026190q

    13. [13]

      Zhong, Y.; Liang, X.; Zhong, Y.; Zhu, J.; Zhu, S.; Yuan, P.; He, H.; Zhang, J. Water. Res. 2012, 46, 4633.  doi: 10.1016/j.watres.2012.06.025

    14. [14]

      Peller, J.; Wiest, O.; Kamat, P. V. Chem. Eur. J. 2003, 9, 5379.  doi: 10.1002/chem.v9:21

    15. [15]

      Von Sonntag, C. Water. Sci. Technol. 2008, 58, 1015.  doi: 10.2166/wst.2008.467

    16. [16]

      Wang, J. N.; Xu, L. J. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251.  doi: 10.1080/10643389.2010.507698

    17. [17]

      Pera-Titus, M.; García-Molina, V.; Baños, M. A.; Giménez, J.; Esplugas, S. Appl. Catal. B: Environ. 2004, 47, 219.  doi: 10.1016/j.apcatb.2003.09.010

    18. [18]

      Schuster, G. B. Acc. Chem. Res. 1979, 12, 366.  doi: 10.1021/ar50142a003

    19. [19]

      Matsumoto, M. J. Photochem. Photobiol. C 2004, 5, 27.  doi: 10.1016/j.jphotochemrev.2004.02.001

    20. [20]

      Almeida de Oliveira, M.; Bartoloni, F. H.; Augusto, F. A.; Ciscato, L. F. M. L.; Bastos, E. L.; Badder, W. J. J. Org. Chem. 2012, 77, 10537.  doi: 10.1021/jo301309v

    21. [21]

      Widder, E. A. Science 2010, 328, 704.  doi: 10.1126/science.1174269

    22. [22]

      Adam, W.; Kazakov, D. V.; Kazakov, V. P. Chem. Rev. 2005, 105, 3371.  doi: 10.1021/cr0300035

    23. [23]

      Grayeski, M. L. Anal. Chem. 1987, 59, 1243A.  doi: 10.1021/ac00148a723

    24. [24]

      McCapra, F. Methods Enzymol. 2000, 305, 3.  doi: 10.1016/S0076-6879(00)05475-6

    25. [25]

      Zhou, W.; Cao, Y.; Sui, D.; Lu, C. Angew. Chem. Int. Ed. 2016, 55, 4236.  doi: 10.1002/anie.201511868

    26. [26]

      Wang, D. B.; Zhao, L. X.; Guo, L. H.; Zhang, H.; Wan, B.; Yang, Y. Acta Chim. Sinica 2015, 73, 388.  doi: 10.6023/A15010036
       

    27. [27]

      Li, Y.; Liu, W. N.; Zheng, X. W. Acta Chim. Sinica 2015, 73, 749.  doi: 10.6023/A15010047
       

    28. [28]

      Mao, L.; Liu, Y. X.; Huang, C. H.; Gao, H. Y.; Kalyanaraman, B.; Zhu, B. Z. Environ. Sci. Technol. 2015, 49, 7940.  doi: 10.1021/acs.est.5b01227

    29. [29]

      Wardman, P.; Candeias, L. P. Radiat. Res. 1996, 145, 523.  doi: 10.2307/3579270

    30. [30]

      Goldstein, S.; Meyerstein, D.; Czapski, G. Free Radic. Biol. Med. 1993, 15, 435.  doi: 10.1016/0891-5849(93)90043-T

    31. [31]

      Zhu, B. Z.; Zhao, H. T.; Kalyanaraman, B.; Liu, J.; Shan, G. Q.; Du, Y. G.; Frei, B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3698.  doi: 10.1073/pnas.0605527104

    32. [32]

      Zhu, B. Z.; Kalyanaraman, B.; Jiang, G. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17575.  doi: 10.1073/pnas.0704030104

    33. [33]

      Zhu, B. Z.; Shan, G. Q.; Huang, C. H.; Kalyanaraman, B.; Mao, L.; Du, Y. G. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 11466.  doi: 10.1073/pnas.0900065106

    34. [34]

      Zhu, B. Z.; Mao, L.; Huang, C. H.; Qin, H.; Fan, R. M.; Kalyanaraman, B.; Zhu, J. G. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 16046.  doi: 10.1073/pnas.1204479109

    35. [35]

      Zhu, B. Z.; Ren, F. R.; Mao, L.; Gao, H. Y.; Liu, Q. L.; Liu, P. Chin. Sci. Bull. 2015, 60, 1855.  doi: 10.1360/N972015-00286

    36. [36]

      Brunmark, A.; Cadenas, E. Free Radic. Biol. Med. 1987, 3, 169.  doi: 10.1016/0891-5849(87)90002-5

    37. [37]

      Weavers, L. K.; Malmstadt, N.; Hoffmann, M. R. Environ. Sci. Technol. 2000, 34, 1280.  doi: 10.1021/es980795y

    38. [38]

      Fukushima, M.; Tatsumi, K. Environ. Sci. Technol. 2001, 35, 1771.  doi: 10.1021/es001088j

    39. [39]

      Zhao, Y.; Qin, F.; Boyd, J. M.; Anichina, J.; Li, X. F. Anal. Chem. 2010, 82, 4599.  doi: 10.1021/ac100708u

    40. [40]

      Chignell, C. F.; Han, S. K.; Mouithys-Mickalad, A.; Sik, R. H.; Stadler, K.; Kadiiska, M. B. Toxicol. Appl. Pharmacol. 2008, 230, 17.Kelly, B. C.; Ikonomou, M. G.; Blair, J. D.; Morin, A. E.; Gobas, F. A. P. C. Science 2007, 317, 236.  doi: 10.1016/j.taap.2008.01.035

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    5. [5]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    11. [11]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    12. [12]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    13. [13]

      Qian Shao Jiajing Tan Yongmei Chen Jiyue Jing Zhuo Wang . Exploration and Practice on the Management of Extracurricular Innovation Laboratories in Chemistry. University Chemistry, 2024, 39(4): 19-25. doi: 10.3866/PKU.DXHX202310119

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    16. [16]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    17. [17]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    18. [18]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    19. [19]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    20. [20]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

Metrics
  • PDF Downloads(0)
  • Abstract views(1223)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return