Citation: Wan Lun, Zhang Manbo, Wang Jingxia, Jiang Lei. Research Progress of the Metal-based Photonic Crystals[J]. Acta Chimica Sinica, ;2016, 74(8): 639-648. doi: 10.6023/A16040172 shu

Research Progress of the Metal-based Photonic Crystals

  • Corresponding author: Zhang Manbo, jingxiawang@mail.ipc.ac.cn Wang Jingxia, zmb@hunnu.edu.cn
  • Received Date: 7 April 2016

    Fund Project: the Ministry of Science and Technology of the China funding 2016YFA0200803the National Natural Science Foundation of China 50973117the National Natural Science Foundation of China 91127029the National Natural Science Foundation of China 21074139the National Natural Science Foundation of China 51373183

Figures(11)

  • Metal-based photonic crystals (PCs), which provide a unique optic-electric properties based on its intrinsic characteristic, is of great significance for the applications in the field of new energy system, such as solar cells, water electrolysis, light emitting diode (LED), etc. This article reviews the research progress of the metal-based PC, including the fabrication method, property investigation and the relative applications. Metal-based PCs are generally fabricated from the building blocks of metal, metal oxide or their composites materials. The fabrication method refers to the bottom up and top down approach. Bottom up approach covers the self-assembly of the metal nanoparticles directly or infiltrating the nanoparticles into the opal template and the subsequent removal of the template toward the metal-based inverse opals. Top down approach refers to the lithography and deposition. The lithography approach includes laser lithography, reaction ion etching, etc. And the deposition method covers physical vapor deposition, atomic layer deposition, pulsed laser deposition, etc. Furthermore, the metal-based PCs demonstrate many excellent properties based on the combination of the light manipulation property of PCs and the intrinsic property of the metal materials. For example, the materials showed surface-enhanced Raman effect, which can provide special optic signal and demonstrate the application in high-sensitive detecting of organic molecules. The combination of Plasmon effect of metal particles and photonic stopband of the PCs can improve the emission intensity, which is significant for the application in high efficient detecting of special material. Otherwise, the stopband of metal-based PCs is beneficial for the improvement of the optic adsorbent property and photoluminescence property. Furthermore, the combination of metal materials and its suitable stopband can amplify its optic-electronic property, sensing property and the optic-catalytic behavior. Finally, the potential applications of metal-based PCs on the new energy system is put forward. Typically, it was used as optic-electric materials in solar cell, water electrolysis, and high efficient LED. This review will provide an important insight for the new energy development and potential utilization.
  • 加载中
    1. [1]

      Yablonovitch E.Phys. Rev. Lett., 1987, 58:2059.  doi: 10.1103/PhysRevLett.58.2059

    2. [2]

      John S.Phys. Rev. Lett., 1987, 58:2486.  doi: 10.1103/PhysRevLett.58.2486

    3. [3]

      Xia Y. N., Gates B., Yin Y. D., Lu Y.Adv. Mater., 2000, 12:693.  doi: 10.1002/(ISSN)1521-4095

    4. [4]

      Ueno K., Matsubara K., Watanabe M., Takeoka Y.Adv. Mater., 2007, 19:2807.  doi: 10.1002/(ISSN)1521-4095

    5. [5]

      Li H., Wang J. X., Liu F., Song Y. L., Jiang L. J.Colloid Interface Sci., 2011, 356:63.  doi: 10.1016/j.jcis.2010.12.078

    6. [6]

      Aliev, A. E.; Lee, S. B.; Baughman, R. H. Phys. C 2007, 453, 15; (b) Lu, Y. R.; Yin, P. F.; Mao, J.; Ning, M. J.; Zhou, Y. Z.; Dong, C. K.; Ling, T.; Du, X. W. J. Mater. Chem. A 2015, 3, 18521.

    7. [7]

      Waterhouse G. I. N., Wahab A. K., Oufi M. A., Jovic V., Anjum D. H., Waterhouse D. S., Idriss L.ChemSusChem, 2011, 4:1481.  doi: 10.1002/cssc.v4.10

    8. [8]

      Bayram S., Halaoui L.Part. Part. Syst. Chatact., 2013, 30:706.  doi: 10.1002/ppsc.v30.8

    9. [9]

      Huang, Y.; Zhou, J. M.; Wang, J. X.; Song, Y. L.; Jiang, L. J.Am. Chem. Soc. 2012, 134, 17053.; (b) Wang, J. X.; Zhang, Y. J.; Wang, S. T.; Song, Y. L.; Jiang, L. Acc. Chem. Res.2011, 44, 405.; (c) Kang, H.; Kim, S. H. Adv. Mater.2015, 27, 1282; (d) Guo, Y. G.; Yang, M.; Wu, Q. Acta Chim. Sinica 2013, 71, 693. (郭阳光, 杨穆, 吴强, 化学学报, 2013, 71, 693.) (e) Zhang, G.; Zhao, Z. Y.; Wang, D. Y. Chem. J. Chin.Univ. 2010, 31, 839. (张刚, 赵志远, 汪大洋, 高等学校化学学报, 2010, 31, 839.)

    10. [10]

      Hill, M. T.; Gather, M. C. Nat. Photon. 2014,8, 908; (b) Liu, X. F.; Sun, C. H.; Jiang, P. Chem. Mater.2010, 22, 1768; (c) Manzke, A.; Plettl, A.; Wiedwald, U.; Han, L. Y.; Ziemann, P.; Schreiber, E.; Zener, U.; Vogel, N.; Weiss, C. K.; Landfester, K.; Fauth, K.; Biskupek, J.; Kaiser, U. Chem. Mater. 2012,24, 1048; (d) Pang, Z. G.; Zhang, X. P. Nanotechnology 2011,11, 145303.

    11. [11]

      Haynes C. L., Mcfarlang A. D., Smith M. T., Hulteen J. C., Duyne R. P.V. J. Phys. Chem. B, 2002, 106:1898.  doi: 10.1021/jp013570+

    12. [12]

      Jiang P., McFarland M. J.J. Am. Chem. Soc., 2005, 127:3710.  doi: 10.1021/ja042789+

    13. [13]

      Qiao, H. Z.; Yang, J. J.; Wang, F.; Yang, Y.; Sun, J. L. Opt.Express 2015, 23, 26617; (b) Li, Y. F.; Zhang, J. H.; Zhu, S. J. Adv. Mater. 2009, 21, 4731.

    14. [14]

      Fragala M. E., Satriano C., Malandrino G.Chem. Commun. 2009, 839.

    15. [15]

      Wang J. J., Duan G. T., Liu G. Q., Li Y., Xu L., Cai W. P.J. Mater. Chem. C, 2015, 3:5709.  doi: 10.1039/C5TC00790A

    16. [16]

      Yang S. K., Lapsley M. I., Cao B. Q., Zhao C. L., Zhao Y. H., Hao Q. Z., Kiraly B., Scott J., Li W. Z., Wang, L; Lei Y., Huang T. J.Adv. Funct. Mater., 2013, 23:720.  doi: 10.1002/adfm.v23.6

    17. [17]

      Arpin K. A., Losego M. D., Braun P. V.Nano Commun., 2013, 4:2630.

    18. [18]

      Li L., Li Y., Gao S. Y., Koshizaki N. J.Mater. Chem., 2009, 19:8366.  doi: 10.1039/b914462e

    19. [19]

      Li Y., Koshizaki N., Shimizu Y., Li L., Gao S. Y., Sasaki T.ACS Appl. Mater. Interfaces, 2009, 1:2580.  doi: 10.1021/am900513m

    20. [20]

      Love J. C., Gates B. D., Wolfe D. B., Paul K. E., Whitesides G. M.Nano Lett., 2002, 2:891.  doi: 10.1021/nl025633l

    21. [21]

      Fragala M. E., Satrianob C., Malandrino G.Commun. Chem., 2009, 7:839.

    22. [22]

      Povey I. M., Whitehead D., Thomas K., Pemble M. E., Bardosova M.Appl. Phys. Lett., 2006, 89:104103  doi: 10.1063/1.2345359

    23. [23]

      Li L. M., Jiao X. L., Chen D. R., Lotsch B. V., Li C.Chem. Mater., 2015, 27:7601.  doi: 10.1021/acs.chemmater.5b02476

    24. [24]

      Lu G., Farha O. K., Kreno L. E., Schoenecker P. M., Walton R. P., Duyne P. V., Hupp J. T.Adv. Mater., 2011, 23:4449.  doi: 10.1002/adma.201102116

    25. [25]

      Imura Y., Kato M., Kondo T., Kondo T., Kawai T.Langmuir, 2010, 26:11314.  doi: 10.1021/la100626v

    26. [26]

      Zeng H. B., Xu X. J., Bando Y., Gautam U. K., Zhai T. Y., Fang X. S., Liu B. D., Globerg D.Adv. Funct. Mater., 2009, 19:3165.  doi: 10.1002/adfm.v19:19

    27. [27]

      Labouchere P., Chandiran A. K., Moehl T., Harms H., Chavhan S., Zaera R. T., Nazeeruddin M. K., Graetzel M., Tetreault N.Adv. Energy Mater., 2014, 4:1400217.  doi: 10.1002/aenm.201400217

    28. [28]

      Fu R. R., Liu G. Q., Jia C., Li X. H., Tang X., Duan G. T., Li Y., Cai W. P.Chem. Commun., 2015, 51:6609.  doi: 10.1039/C4CC10009C

    29. [29]

      Dimitrov, A. S.; Nagayama, K. Langmuir 1996, 12, 1303; (b) Watanabe, S.; Mino, Y.; Ichikawa, Y.; Miyahara, M. T. Langmuir 2012, 28, 12982.

    30. [30]

      Dai Z. F., Dai H., Zhou Y., Liu D. L., Duan G. T., Cai W. P., Li Y.Adv. Mater. Interface, 2015, 2:1500167.  doi: 10.1002/admi.201500167

    31. [31]

    32. [32]

      Zheng X. L., Qin W. J., Ling T., Pan C. F., Du X. W.Adv. Mater. Inter., 2015, 2:1400464.  doi: 10.1002/admi.201400464

    33. [33]

      Wang, Y. Z.; Wei, C.; Cong, H. L.; Yang, Q.; Wu, Y. C.; Su, B.; Zhao, Y. S.; Wang, J. X.; Jiang, L. ACS Appl. Mater.Interface 2016, 8, 4985; (b) Wang, T.; Chen, S. R.; Cui, L. Y.; Cai, J. H.; Jin, F.; Zheng, Y. M.; Wang, J. X.; Song, Y. L.; Jiang, L. Chem. Commun. 2015,51, 1367.

    34. [34]

      Zhao, W. T.; Disalvo, F. J. Chem. Commun. 2015, 51, 4876; (b) Orilall, M. C.; Abrams, N. M.; Lee, J.; DiSalvo, F. J.; Wiesner, U. J. Am. Chem. Soc. 2008, 8882.

    35. [35]

      Sun F. Q., Cai W. P., Li Y., Cao B.Q; Lei Y., Zhang L. D.Adv. Funct. Mater., 2004, 14:283.  doi: 10.1002/(ISSN)1616-3028

    36. [36]

      Xia L., Xu L., Song J., Xu R., Liu D. L., Dong B., Song H. W.Sci. Rep., 2015, 5:10838.  doi: 10.1038/srep10838

    37. [37]

      Sun F. Q., Yu J. C., Wang X. C.Chem. Mater., 2006, 18:3774.  doi: 10.1021/cm060982s

    38. [38]

      Gomez F. G., Ibisate M., Golmayo D., Palomares F. J., Herrera M., Hernansez J., Molina S. I., Blanco A., Lopez C.Adv. Mater., 2011, 23:5219.  doi: 10.1002/adma.v23.44

    39. [39]

      Duan G. T., Lv F. J., Cai W. P., Luo Y. Y., Li Y., Liu G. Q.Langmuir, 2010, 26:6295.  doi: 10.1021/la904116p

    40. [40]

      Li C., Zhu X. T., Zhang H. F., Zhu Z. Z., Liu B., Cheng C. W.Adv. Mater. Interface, 2015, 2:1500428.  doi: 10.1002/admi.201500428

    41. [41]

      Gao R., Hu L. F., Chen M., Wu L. M.Small, 2014, 15:3038.

    42. [42]

      Liu J. Y., Zhang G., Wang J. J., Cho J., Pikul J. H., Epstein E. S., Huang X. J., Liu J. H., King W. P., Braun P. V.Adv. Mater., 2014, 26:7096.  doi: 10.1002/adma.201402552

    43. [43]

      Cheng C. W., Karuturi S. K., Liu L. J., Liu J. J., Li H. X., Su L. T., Tok A. L. Y., Fan G. J.Q. Small, 2012, 8:37.  doi: 10.1002/smll.201101660

    44. [44]

      Duan G. T., Lv F. J., Liu G. Q.Langmuir, 2010, 26:6295.  doi: 10.1021/la904116p

    45. [45]

    46. [46]

      Ibbotson L. A., Demetriadou A., Croxall S.Hess O., Baumberg J. J.Sci. Rep., 2015, 5:8313.  doi: 10.1038/srep08313

    47. [47]

      Zeng H. B., Xu X. J., Golberg D. T.Adv. Funct. Mater., 2009, 19:3165.  doi: 10.1002/adfm.v19:19

    48. [48]

      Garcia P. D., Blanco A., Shavel A., Gaponik N., Eychmuller A., Gonzalez B. R., Lopez C.Adv. Mater., 2006, 18:2768.  doi: 10.1002/(ISSN)1521-4095

    49. [49]

      Li C. L., Dag O., Dao T. D., Nagao T., Sakamoto Y., Kimura O. T., Yamauchi Y.Nat. Commun., 2015, 6:6608.  doi: 10.1038/ncomms7608

    50. [50]

      Zhang, H. H.; Liu, M.; Zhou, F.; Liu, D. L.; Liu, G. Q.; Duan, G. T.; Cai, W. P.; Li, Y. Small 2015, 11, 844; (b) Li, C. L.; Dag, O.; Yamauchi, Y. Nat. Commun. 2015, 6, 6608.

    51. [51]

      Wang F.. Ph.D. Dissertation[J]. Jinan University, Guangzhou, 2015.

    52. [52]

      Shao B., Yang Z. W., Wang Y. D., Li J., Yang J. Z., Qiu J. B., Song Z. G.ACS Appl. Mater. Inter., 2015, 7:25211.  doi: 10.1021/acsami.5b06817

    53. [53]

    54. [54]

      Warren S. C., Perkins M. R., Adams A. M., Kamperman M., Burns A. A., Arora H., Herz E., Suteewong T., Sai H., Li Z. H., Werner J., Song J., Zwanziger U. W., Zwanziger J. W., Gratzel M., DiSalvo F. J., Wiesner U.Nat. Mater., 2012, 11:460.  doi: 10.1038/nmat3274

    55. [55]

      Zhu R., McLachlan M., Reyntjens S., Tariq F., Ryan M. P., McComb D. W.Nanoscale, 2009, 1:355.  doi: 10.1039/b9nr00213h

    56. [56]

      Liang Z., Zheng G. Y., Li W. Y., Seh Z. W., Yao H. B., Yan K., Kong D. S., Cui Y.ACS Nano, 2014, 8:5249.  doi: 10.1021/nn501308m

    57. [57]

      Sun Y., Zhang Z. X., Shen Y. H.Nanoscale, 2015, 7:13974.  doi: 10.1039/C5NR03402G

    58. [58]

      Ma M., Kim J. K., Zhang K., Shi X. J., Kim S. J., Moom J. H., park H. J.Chem. Mater., 2014, 26:5592.  doi: 10.1021/cm502073d

    59. [59]

      Liu Q. H., He J. F., Yao T., Su Z. H., Cheng W. R., He S., Xie Y., Peng Y. H., Cheng H., Sun Y. F., Jiang Y., Hu F. C., Xie Z., Yan W. S., Pan Z. Y., Wu Z. Y., Wei S. Q.Nat. Commun., 2014, 5:5122.  doi: 10.1038/ncomms6122

    60. [60]

      Chen K., Tuysuz H.Angew. Chem., Int. Ed., 2015, 54:13806.  doi: 10.1002/anie.201506367

    61. [61]

      Sun F. Q., Cai W. P., Li Y., Jia L. C., Lu F.Adv. Mater., 2005, 17:2872.  doi: 10.1002/(ISSN)1521-4095

    62. [62]

    63. [63]

      Xu, S. P.; Sun, F. Q.; Yang, S. M.; Pan, Z. Z.; Long, J. F.; Gu, F. L. Sci. Rep. 2015, 5, 8939; (b) Zhang, H. W.; Duan, G. T.; Liu, G. Q.; Li, Y.; Xu, X. X.; Dai, Z. F.; Wang, J. J.; Cai, W. P. Nanoscale2013, 5, 2460.

    64. [64]

      Li L., Steiner U., Mahajan S. J.Mater. Chem., 2010, 20:7131.  doi: 10.1039/c0jm00558d

    65. [65]

      Puzzo D. P., Arsenault A. C., Manners I., Ozin G. A.Angew. Chem., Int. Ed., 2009, 48:943.  doi: 10.1002/anie.v48:5

    66. [66]

    67. [67]

      Waterhouse G. I. N., Chen W. T., Chan A., Jin H. S., Waterhouse D. S., Cowie B. C.C. J. Phys. Chem. C, 2015, 119:6647.  doi: 10.1021/acs.jpcc.5b00437

    68. [68]

      Collins G., Blomker M., Osiak M., Holmes J. D., Bredol M., Dwyer C. O.Chem. Mater., 2013, 25:4312.  doi: 10.1021/cm402458v

    69. [69]

      Lin T. G., Hsu Y. K., Chen S. Y., Chen L. C., Chen K. H.J. Mater. Chem., 2010, 20:10600.

    70. [70]

      Wu M., Deng Z., Su B. L.ChemSusChem., 2011, 4:1481.  doi: 10.1002/cssc.v4.10

    71. [71]

      Zhang L. W., Baumanis C., Robben L., Kandiel T., Bahnemann D.Small, 2011, 7:2714.  doi: 10.1002/smll.v7.19

    72. [72]

      Li P. F., Liu B. A., Ni Y. Z., Liew K. K., Sze J., Chen S., Shen S.Adv. Mater., 2015, 27:4585.  doi: 10.1002/adma.v27.31

    73. [73]

      Zhang, H. G.; Shi, T.; Wetzel, D. J.; Nuzzo, R. G.; Braun, P. V. Adv. Mater. 2016, 28, 742; (b) Glazer, M. P. B.; Cho, J.; Almer, J.; Okasinski, J.; Braun, P. V.; Dunand, D. C. Adv. Energy Mater. 2015, 10, 1500466.

    74. [74]

      Jiao Y. C., Han D. D., Ding Y., Zhang X. F., Guo G. N., Hu J. H., Yang D., Dong A. G.Nat. Commun., 2015, 6:6240.  doi: 10.1038/ncomms7240

    75. [75]

      Su L. T., Karuturi S. K., Luo J. S., Liu L. J., Liu X. F., Guo J., Sum T. C., Deng R., Fan H. J., Liu X. G., Tok A. L.Y. Adv. Mater., 2013, 25:1603.  doi: 10.1002/adma.201204353

    76. [76]

      Li Z. G., Gu Y., Li Y. P., Feng S. S., Yang Z. R., Zhang Y. H., Zeng H. B.Adv. Opt. Mater., 2015, 3:931.  doi: 10.1002/adom.201500096

    77. [77]

      Park Y., Lee J. W., Ha S. J., Moon J. H.Nanoscale, 2014, 6:3105.  doi: 10.1039/C3NR05520E

    78. [78]

      Lee J. W., Lee J., Kim C., Cho C. Y., Moon J. H.Sci. Rep., 2014, 4:6804.  doi: 10.1038/srep06804

    79. [79]

      Ling T., Kulinich S. A., Zhu Z. L., Qiao S. Z., Du X. W.Adv. Funct. Mater., 2014, 24:707.  doi: 10.1002/adfm.201300734

    80. [80]

      Shi X. J., Zhang K., Shin K., Moon J. H., Lee T. W., Park J. H.Phys. Chem. Chem. Phys., 2013, 15:11717.  doi: 10.1039/c3cp50459j

    81. [81]

      Huang Y. J., Lai C. H., Wu P. W., Chen L. Y.J. Electrochem. Soc., 2010, 157:18.

    82. [82]

      Zhang L. W., Lin C. Y., Valev V. K., Reisner E., Steiner U., Baumberg J. J.Small, 2014, 10:3970.  doi: 10.1002/smll.201400970

    83. [83]

      Nelson E. C., Dias N. L., Bassett K. P., Dunham S. N., Verma V., Miyake M., Wiltzius P., Rogers J. A., Coleman J. J., Li X. L., Braun P. V.Nat. Mater., 2011, 10:676.  doi: 10.1038/nmat3071

    84. [84]

      Ng W. N., Leung C. H., Lai P. T., Choi H. W.Nanotechnology, 2008, 19:255302.  doi: 10.1088/0957-4484/19/25/255302

  • 加载中
    1. [1]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    10. [10]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    20. [20]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

Metrics
  • PDF Downloads(0)
  • Abstract views(1403)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return