Citation: Wan Lun, Zhang Manbo, Wang Jingxia, Jiang Lei. Research Progress of the Metal-based Photonic Crystals[J]. Acta Chimica Sinica, ;2016, 74(8): 639-648. doi: 10.6023/A16040172 shu

Research Progress of the Metal-based Photonic Crystals

  • Corresponding author: Zhang Manbo, jingxiawang@mail.ipc.ac.cn Wang Jingxia, zmb@hunnu.edu.cn
  • Received Date: 7 April 2016

    Fund Project: the Ministry of Science and Technology of the China funding 2016YFA0200803the National Natural Science Foundation of China 50973117the National Natural Science Foundation of China 91127029the National Natural Science Foundation of China 21074139the National Natural Science Foundation of China 51373183

Figures(11)

  • Metal-based photonic crystals (PCs), which provide a unique optic-electric properties based on its intrinsic characteristic, is of great significance for the applications in the field of new energy system, such as solar cells, water electrolysis, light emitting diode (LED), etc. This article reviews the research progress of the metal-based PC, including the fabrication method, property investigation and the relative applications. Metal-based PCs are generally fabricated from the building blocks of metal, metal oxide or their composites materials. The fabrication method refers to the bottom up and top down approach. Bottom up approach covers the self-assembly of the metal nanoparticles directly or infiltrating the nanoparticles into the opal template and the subsequent removal of the template toward the metal-based inverse opals. Top down approach refers to the lithography and deposition. The lithography approach includes laser lithography, reaction ion etching, etc. And the deposition method covers physical vapor deposition, atomic layer deposition, pulsed laser deposition, etc. Furthermore, the metal-based PCs demonstrate many excellent properties based on the combination of the light manipulation property of PCs and the intrinsic property of the metal materials. For example, the materials showed surface-enhanced Raman effect, which can provide special optic signal and demonstrate the application in high-sensitive detecting of organic molecules. The combination of Plasmon effect of metal particles and photonic stopband of the PCs can improve the emission intensity, which is significant for the application in high efficient detecting of special material. Otherwise, the stopband of metal-based PCs is beneficial for the improvement of the optic adsorbent property and photoluminescence property. Furthermore, the combination of metal materials and its suitable stopband can amplify its optic-electronic property, sensing property and the optic-catalytic behavior. Finally, the potential applications of metal-based PCs on the new energy system is put forward. Typically, it was used as optic-electric materials in solar cell, water electrolysis, and high efficient LED. This review will provide an important insight for the new energy development and potential utilization.
  • 加载中
    1. [1]

      Yablonovitch E.Phys. Rev. Lett., 1987, 58:2059.  doi: 10.1103/PhysRevLett.58.2059

    2. [2]

      John S.Phys. Rev. Lett., 1987, 58:2486.  doi: 10.1103/PhysRevLett.58.2486

    3. [3]

      Xia Y. N., Gates B., Yin Y. D., Lu Y.Adv. Mater., 2000, 12:693.  doi: 10.1002/(ISSN)1521-4095

    4. [4]

      Ueno K., Matsubara K., Watanabe M., Takeoka Y.Adv. Mater., 2007, 19:2807.  doi: 10.1002/(ISSN)1521-4095

    5. [5]

      Li H., Wang J. X., Liu F., Song Y. L., Jiang L. J.Colloid Interface Sci., 2011, 356:63.  doi: 10.1016/j.jcis.2010.12.078

    6. [6]

      Aliev, A. E.; Lee, S. B.; Baughman, R. H. Phys. C 2007, 453, 15; (b) Lu, Y. R.; Yin, P. F.; Mao, J.; Ning, M. J.; Zhou, Y. Z.; Dong, C. K.; Ling, T.; Du, X. W. J. Mater. Chem. A 2015, 3, 18521.

    7. [7]

      Waterhouse G. I. N., Wahab A. K., Oufi M. A., Jovic V., Anjum D. H., Waterhouse D. S., Idriss L.ChemSusChem, 2011, 4:1481.  doi: 10.1002/cssc.v4.10

    8. [8]

      Bayram S., Halaoui L.Part. Part. Syst. Chatact., 2013, 30:706.  doi: 10.1002/ppsc.v30.8

    9. [9]

      Huang, Y.; Zhou, J. M.; Wang, J. X.; Song, Y. L.; Jiang, L. J.Am. Chem. Soc. 2012, 134, 17053.; (b) Wang, J. X.; Zhang, Y. J.; Wang, S. T.; Song, Y. L.; Jiang, L. Acc. Chem. Res.2011, 44, 405.; (c) Kang, H.; Kim, S. H. Adv. Mater.2015, 27, 1282; (d) Guo, Y. G.; Yang, M.; Wu, Q. Acta Chim. Sinica 2013, 71, 693. (郭阳光, 杨穆, 吴强, 化学学报, 2013, 71, 693.) (e) Zhang, G.; Zhao, Z. Y.; Wang, D. Y. Chem. J. Chin.Univ. 2010, 31, 839. (张刚, 赵志远, 汪大洋, 高等学校化学学报, 2010, 31, 839.)

    10. [10]

      Hill, M. T.; Gather, M. C. Nat. Photon. 2014,8, 908; (b) Liu, X. F.; Sun, C. H.; Jiang, P. Chem. Mater.2010, 22, 1768; (c) Manzke, A.; Plettl, A.; Wiedwald, U.; Han, L. Y.; Ziemann, P.; Schreiber, E.; Zener, U.; Vogel, N.; Weiss, C. K.; Landfester, K.; Fauth, K.; Biskupek, J.; Kaiser, U. Chem. Mater. 2012,24, 1048; (d) Pang, Z. G.; Zhang, X. P. Nanotechnology 2011,11, 145303.

    11. [11]

      Haynes C. L., Mcfarlang A. D., Smith M. T., Hulteen J. C., Duyne R. P.V. J. Phys. Chem. B, 2002, 106:1898.  doi: 10.1021/jp013570+

    12. [12]

      Jiang P., McFarland M. J.J. Am. Chem. Soc., 2005, 127:3710.  doi: 10.1021/ja042789+

    13. [13]

      Qiao, H. Z.; Yang, J. J.; Wang, F.; Yang, Y.; Sun, J. L. Opt.Express 2015, 23, 26617; (b) Li, Y. F.; Zhang, J. H.; Zhu, S. J. Adv. Mater. 2009, 21, 4731.

    14. [14]

      Fragala M. E., Satriano C., Malandrino G.Chem. Commun. 2009, 839.

    15. [15]

      Wang J. J., Duan G. T., Liu G. Q., Li Y., Xu L., Cai W. P.J. Mater. Chem. C, 2015, 3:5709.  doi: 10.1039/C5TC00790A

    16. [16]

      Yang S. K., Lapsley M. I., Cao B. Q., Zhao C. L., Zhao Y. H., Hao Q. Z., Kiraly B., Scott J., Li W. Z., Wang, L; Lei Y., Huang T. J.Adv. Funct. Mater., 2013, 23:720.  doi: 10.1002/adfm.v23.6

    17. [17]

      Arpin K. A., Losego M. D., Braun P. V.Nano Commun., 2013, 4:2630.

    18. [18]

      Li L., Li Y., Gao S. Y., Koshizaki N. J.Mater. Chem., 2009, 19:8366.  doi: 10.1039/b914462e

    19. [19]

      Li Y., Koshizaki N., Shimizu Y., Li L., Gao S. Y., Sasaki T.ACS Appl. Mater. Interfaces, 2009, 1:2580.  doi: 10.1021/am900513m

    20. [20]

      Love J. C., Gates B. D., Wolfe D. B., Paul K. E., Whitesides G. M.Nano Lett., 2002, 2:891.  doi: 10.1021/nl025633l

    21. [21]

      Fragala M. E., Satrianob C., Malandrino G.Commun. Chem., 2009, 7:839.

    22. [22]

      Povey I. M., Whitehead D., Thomas K., Pemble M. E., Bardosova M.Appl. Phys. Lett., 2006, 89:104103  doi: 10.1063/1.2345359

    23. [23]

      Li L. M., Jiao X. L., Chen D. R., Lotsch B. V., Li C.Chem. Mater., 2015, 27:7601.  doi: 10.1021/acs.chemmater.5b02476

    24. [24]

      Lu G., Farha O. K., Kreno L. E., Schoenecker P. M., Walton R. P., Duyne P. V., Hupp J. T.Adv. Mater., 2011, 23:4449.  doi: 10.1002/adma.201102116

    25. [25]

      Imura Y., Kato M., Kondo T., Kondo T., Kawai T.Langmuir, 2010, 26:11314.  doi: 10.1021/la100626v

    26. [26]

      Zeng H. B., Xu X. J., Bando Y., Gautam U. K., Zhai T. Y., Fang X. S., Liu B. D., Globerg D.Adv. Funct. Mater., 2009, 19:3165.  doi: 10.1002/adfm.v19:19

    27. [27]

      Labouchere P., Chandiran A. K., Moehl T., Harms H., Chavhan S., Zaera R. T., Nazeeruddin M. K., Graetzel M., Tetreault N.Adv. Energy Mater., 2014, 4:1400217.  doi: 10.1002/aenm.201400217

    28. [28]

      Fu R. R., Liu G. Q., Jia C., Li X. H., Tang X., Duan G. T., Li Y., Cai W. P.Chem. Commun., 2015, 51:6609.  doi: 10.1039/C4CC10009C

    29. [29]

      Dimitrov, A. S.; Nagayama, K. Langmuir 1996, 12, 1303; (b) Watanabe, S.; Mino, Y.; Ichikawa, Y.; Miyahara, M. T. Langmuir 2012, 28, 12982.

    30. [30]

      Dai Z. F., Dai H., Zhou Y., Liu D. L., Duan G. T., Cai W. P., Li Y.Adv. Mater. Interface, 2015, 2:1500167.  doi: 10.1002/admi.201500167

    31. [31]

    32. [32]

      Zheng X. L., Qin W. J., Ling T., Pan C. F., Du X. W.Adv. Mater. Inter., 2015, 2:1400464.  doi: 10.1002/admi.201400464

    33. [33]

      Wang, Y. Z.; Wei, C.; Cong, H. L.; Yang, Q.; Wu, Y. C.; Su, B.; Zhao, Y. S.; Wang, J. X.; Jiang, L. ACS Appl. Mater.Interface 2016, 8, 4985; (b) Wang, T.; Chen, S. R.; Cui, L. Y.; Cai, J. H.; Jin, F.; Zheng, Y. M.; Wang, J. X.; Song, Y. L.; Jiang, L. Chem. Commun. 2015,51, 1367.

    34. [34]

      Zhao, W. T.; Disalvo, F. J. Chem. Commun. 2015, 51, 4876; (b) Orilall, M. C.; Abrams, N. M.; Lee, J.; DiSalvo, F. J.; Wiesner, U. J. Am. Chem. Soc. 2008, 8882.

    35. [35]

      Sun F. Q., Cai W. P., Li Y., Cao B.Q; Lei Y., Zhang L. D.Adv. Funct. Mater., 2004, 14:283.  doi: 10.1002/(ISSN)1616-3028

    36. [36]

      Xia L., Xu L., Song J., Xu R., Liu D. L., Dong B., Song H. W.Sci. Rep., 2015, 5:10838.  doi: 10.1038/srep10838

    37. [37]

      Sun F. Q., Yu J. C., Wang X. C.Chem. Mater., 2006, 18:3774.  doi: 10.1021/cm060982s

    38. [38]

      Gomez F. G., Ibisate M., Golmayo D., Palomares F. J., Herrera M., Hernansez J., Molina S. I., Blanco A., Lopez C.Adv. Mater., 2011, 23:5219.  doi: 10.1002/adma.v23.44

    39. [39]

      Duan G. T., Lv F. J., Cai W. P., Luo Y. Y., Li Y., Liu G. Q.Langmuir, 2010, 26:6295.  doi: 10.1021/la904116p

    40. [40]

      Li C., Zhu X. T., Zhang H. F., Zhu Z. Z., Liu B., Cheng C. W.Adv. Mater. Interface, 2015, 2:1500428.  doi: 10.1002/admi.201500428

    41. [41]

      Gao R., Hu L. F., Chen M., Wu L. M.Small, 2014, 15:3038.

    42. [42]

      Liu J. Y., Zhang G., Wang J. J., Cho J., Pikul J. H., Epstein E. S., Huang X. J., Liu J. H., King W. P., Braun P. V.Adv. Mater., 2014, 26:7096.  doi: 10.1002/adma.201402552

    43. [43]

      Cheng C. W., Karuturi S. K., Liu L. J., Liu J. J., Li H. X., Su L. T., Tok A. L. Y., Fan G. J.Q. Small, 2012, 8:37.  doi: 10.1002/smll.201101660

    44. [44]

      Duan G. T., Lv F. J., Liu G. Q.Langmuir, 2010, 26:6295.  doi: 10.1021/la904116p

    45. [45]

    46. [46]

      Ibbotson L. A., Demetriadou A., Croxall S.Hess O., Baumberg J. J.Sci. Rep., 2015, 5:8313.  doi: 10.1038/srep08313

    47. [47]

      Zeng H. B., Xu X. J., Golberg D. T.Adv. Funct. Mater., 2009, 19:3165.  doi: 10.1002/adfm.v19:19

    48. [48]

      Garcia P. D., Blanco A., Shavel A., Gaponik N., Eychmuller A., Gonzalez B. R., Lopez C.Adv. Mater., 2006, 18:2768.  doi: 10.1002/(ISSN)1521-4095

    49. [49]

      Li C. L., Dag O., Dao T. D., Nagao T., Sakamoto Y., Kimura O. T., Yamauchi Y.Nat. Commun., 2015, 6:6608.  doi: 10.1038/ncomms7608

    50. [50]

      Zhang, H. H.; Liu, M.; Zhou, F.; Liu, D. L.; Liu, G. Q.; Duan, G. T.; Cai, W. P.; Li, Y. Small 2015, 11, 844; (b) Li, C. L.; Dag, O.; Yamauchi, Y. Nat. Commun. 2015, 6, 6608.

    51. [51]

      Wang F.. Ph.D. Dissertation[J]. Jinan University, Guangzhou, 2015.

    52. [52]

      Shao B., Yang Z. W., Wang Y. D., Li J., Yang J. Z., Qiu J. B., Song Z. G.ACS Appl. Mater. Inter., 2015, 7:25211.  doi: 10.1021/acsami.5b06817

    53. [53]

    54. [54]

      Warren S. C., Perkins M. R., Adams A. M., Kamperman M., Burns A. A., Arora H., Herz E., Suteewong T., Sai H., Li Z. H., Werner J., Song J., Zwanziger U. W., Zwanziger J. W., Gratzel M., DiSalvo F. J., Wiesner U.Nat. Mater., 2012, 11:460.  doi: 10.1038/nmat3274

    55. [55]

      Zhu R., McLachlan M., Reyntjens S., Tariq F., Ryan M. P., McComb D. W.Nanoscale, 2009, 1:355.  doi: 10.1039/b9nr00213h

    56. [56]

      Liang Z., Zheng G. Y., Li W. Y., Seh Z. W., Yao H. B., Yan K., Kong D. S., Cui Y.ACS Nano, 2014, 8:5249.  doi: 10.1021/nn501308m

    57. [57]

      Sun Y., Zhang Z. X., Shen Y. H.Nanoscale, 2015, 7:13974.  doi: 10.1039/C5NR03402G

    58. [58]

      Ma M., Kim J. K., Zhang K., Shi X. J., Kim S. J., Moom J. H., park H. J.Chem. Mater., 2014, 26:5592.  doi: 10.1021/cm502073d

    59. [59]

      Liu Q. H., He J. F., Yao T., Su Z. H., Cheng W. R., He S., Xie Y., Peng Y. H., Cheng H., Sun Y. F., Jiang Y., Hu F. C., Xie Z., Yan W. S., Pan Z. Y., Wu Z. Y., Wei S. Q.Nat. Commun., 2014, 5:5122.  doi: 10.1038/ncomms6122

    60. [60]

      Chen K., Tuysuz H.Angew. Chem., Int. Ed., 2015, 54:13806.  doi: 10.1002/anie.201506367

    61. [61]

      Sun F. Q., Cai W. P., Li Y., Jia L. C., Lu F.Adv. Mater., 2005, 17:2872.  doi: 10.1002/(ISSN)1521-4095

    62. [62]

    63. [63]

      Xu, S. P.; Sun, F. Q.; Yang, S. M.; Pan, Z. Z.; Long, J. F.; Gu, F. L. Sci. Rep. 2015, 5, 8939; (b) Zhang, H. W.; Duan, G. T.; Liu, G. Q.; Li, Y.; Xu, X. X.; Dai, Z. F.; Wang, J. J.; Cai, W. P. Nanoscale2013, 5, 2460.

    64. [64]

      Li L., Steiner U., Mahajan S. J.Mater. Chem., 2010, 20:7131.  doi: 10.1039/c0jm00558d

    65. [65]

      Puzzo D. P., Arsenault A. C., Manners I., Ozin G. A.Angew. Chem., Int. Ed., 2009, 48:943.  doi: 10.1002/anie.v48:5

    66. [66]

    67. [67]

      Waterhouse G. I. N., Chen W. T., Chan A., Jin H. S., Waterhouse D. S., Cowie B. C.C. J. Phys. Chem. C, 2015, 119:6647.  doi: 10.1021/acs.jpcc.5b00437

    68. [68]

      Collins G., Blomker M., Osiak M., Holmes J. D., Bredol M., Dwyer C. O.Chem. Mater., 2013, 25:4312.  doi: 10.1021/cm402458v

    69. [69]

      Lin T. G., Hsu Y. K., Chen S. Y., Chen L. C., Chen K. H.J. Mater. Chem., 2010, 20:10600.

    70. [70]

      Wu M., Deng Z., Su B. L.ChemSusChem., 2011, 4:1481.  doi: 10.1002/cssc.v4.10

    71. [71]

      Zhang L. W., Baumanis C., Robben L., Kandiel T., Bahnemann D.Small, 2011, 7:2714.  doi: 10.1002/smll.v7.19

    72. [72]

      Li P. F., Liu B. A., Ni Y. Z., Liew K. K., Sze J., Chen S., Shen S.Adv. Mater., 2015, 27:4585.  doi: 10.1002/adma.v27.31

    73. [73]

      Zhang, H. G.; Shi, T.; Wetzel, D. J.; Nuzzo, R. G.; Braun, P. V. Adv. Mater. 2016, 28, 742; (b) Glazer, M. P. B.; Cho, J.; Almer, J.; Okasinski, J.; Braun, P. V.; Dunand, D. C. Adv. Energy Mater. 2015, 10, 1500466.

    74. [74]

      Jiao Y. C., Han D. D., Ding Y., Zhang X. F., Guo G. N., Hu J. H., Yang D., Dong A. G.Nat. Commun., 2015, 6:6240.  doi: 10.1038/ncomms7240

    75. [75]

      Su L. T., Karuturi S. K., Luo J. S., Liu L. J., Liu X. F., Guo J., Sum T. C., Deng R., Fan H. J., Liu X. G., Tok A. L.Y. Adv. Mater., 2013, 25:1603.  doi: 10.1002/adma.201204353

    76. [76]

      Li Z. G., Gu Y., Li Y. P., Feng S. S., Yang Z. R., Zhang Y. H., Zeng H. B.Adv. Opt. Mater., 2015, 3:931.  doi: 10.1002/adom.201500096

    77. [77]

      Park Y., Lee J. W., Ha S. J., Moon J. H.Nanoscale, 2014, 6:3105.  doi: 10.1039/C3NR05520E

    78. [78]

      Lee J. W., Lee J., Kim C., Cho C. Y., Moon J. H.Sci. Rep., 2014, 4:6804.  doi: 10.1038/srep06804

    79. [79]

      Ling T., Kulinich S. A., Zhu Z. L., Qiao S. Z., Du X. W.Adv. Funct. Mater., 2014, 24:707.  doi: 10.1002/adfm.201300734

    80. [80]

      Shi X. J., Zhang K., Shin K., Moon J. H., Lee T. W., Park J. H.Phys. Chem. Chem. Phys., 2013, 15:11717.  doi: 10.1039/c3cp50459j

    81. [81]

      Huang Y. J., Lai C. H., Wu P. W., Chen L. Y.J. Electrochem. Soc., 2010, 157:18.

    82. [82]

      Zhang L. W., Lin C. Y., Valev V. K., Reisner E., Steiner U., Baumberg J. J.Small, 2014, 10:3970.  doi: 10.1002/smll.201400970

    83. [83]

      Nelson E. C., Dias N. L., Bassett K. P., Dunham S. N., Verma V., Miyake M., Wiltzius P., Rogers J. A., Coleman J. J., Li X. L., Braun P. V.Nat. Mater., 2011, 10:676.  doi: 10.1038/nmat3071

    84. [84]

      Ng W. N., Leung C. H., Lai P. T., Choi H. W.Nanotechnology, 2008, 19:255302.  doi: 10.1088/0957-4484/19/25/255302

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

Metrics
  • PDF Downloads(0)
  • Abstract views(1374)
  • HTML views(302)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return