Citation: Wen Zhiguo, Tian Chong, Borzov Maxim V., Nie Wanli. Ammonium Chloride/B(C6F5)3 System Catalyzed Selective Addition of Acids to Alkynes[J]. Acta Chimica Sinica, ;2016, 74(6): 498-502. doi: 10.6023/A16040164 shu

Ammonium Chloride/B(C6F5)3 System Catalyzed Selective Addition of Acids to Alkynes

  • Corresponding author: Nie Wanli, niewl126@126.com
  • Received Date: 5 April 2016

    Fund Project: Scientific Research Fund of Sichuan Provincial Educational Department 15ZA0279the National Natural Science Foundation of China 21542011

Figures(6)

  • Development of straightforward and selective approaches to functionalize vinyl groups is an important and continuing goal. A novel convenient route to vinylhalides or enol esters by a Markovnikov regioselective addition of hydrogen chloride or carboxylic acid to the C≡C bond of alkynes in the presence of an ammonium hydrochloride/B(C6F5)3 catalytic system is reported. Thus, when treated with catalytic amounts of ammonium hydroborate ([TMPH]+[Cl-B(C6F5)3]-), equimolar mixtures of hydrogen chloride and alkynes are converted into a variety of chloroalkenes as monoadducts. The yields of the monoadducts are usually higher than 90% for terminal aromatic alkynes, while for the terminal aliphatic alkynes they are considerably lower, with the worst observed for sterically hindered tert-butylacetylene (only 67%). NMR monitoring of the reaction mixtures reveals that under ambient conditions the main by-products are the corresponding diadducts (gem-dihalides). At higher temperatures (50 ℃) for equimolar alkyne/HCl mixtures or at ambient temperature for alkyne-enriched mixtures, the diadduct formation can be nearly completely suppressed. Noteworthy, that both ammonium and borane (-ate) components of the catalytic system are essential for the conversion success. In the case of trifuoroacetic acid addition to alkynes, presence of the ammonium component is not required, with the reaction yields usually exceeding 95% for terminal aromatic alkynes and being modest to good for the aliphatic ones. The reported catalytic system presents the first example of the "metal-free" catalysts for the selective addition of acids to alkynes.
  • 加载中
    1. [1]

    2. [2]

      Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew Chem., Int. Ed. 2007, 119, 8196. (b) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Froehlich, R.; Erker, G. Angew Chem., Int. Ed., 2008, 120, 7654. (c) Wang, H.; Foehlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.

    3. [3]

      Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew Chem., Int. Ed. 2007, 119, 8196. (b) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Froehlich, R.; Erker, G. Angew Chem., Int. Ed., 2008, 120, 7654. (c) Wang, H.; Foehlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.

    4. [4]

      Chen, C.; Eweiner, F.; Wibbeling, B.; Fröhlich, R.; Senda, S.; Ohki, Y.; Tatsumi, K.; Grimme, S.; Kehr, G.; Erker, G. Chem. Asian J. 2010, 5, 2199. (b) Liedtke, R.; Fröhlich, R.; Kehr, G.; Erker, G. Organometallics 2011, 30, 5222. (c) Dierker, G.; Ugolotti, J.; Kehr, G.; Fröhlich, R.; Erker, G. Adv. Synth. Catal. 2009, 351, 1080.

    5. [5]

      Dureen, M. A.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 8396. (b) Dureen, M. A.; Brown, C. C.; Stephan, D. W. Organometallics 2010, 29, 6594. (c) Dureen, M. A.; Brown, C. C.; Stephan, D. W. Organometallics 2010, 29, 6422.

    6. [6]

      Chen, C.; Kehr, G.; Fröhlich, R.; Erker, G. J. Am. Chem. Soc. 2010, 132, 13594. (b) Chen, C.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2010, 46, 3580. (c) Chen, C.; Voss, T.; Fröhlich, R.; Kehr, G.; Erker, G. Org. Lett. 2011, 13, 62. (d) Ekkert, O.; Kehr, G.; Fröhlich, R.; Erker, G. J. Am. Chem. Soc. 2011, 133, 4610. (e) Kehr, G.; Erker, G. Chem. Commun. 2012, 48, 1839. (f) Jiang, C. F.; Blacque, O.; Berke, H. Organometallics 2010, 29, 125.

    7. [7]

      Chernichenko, k.; Madarasz, A.; Papai, I.; Nieger, M.; Leskelae, M.; Repo, T. Nat. Chem. 2013, 5, 718.

    8. [8]

      Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809. (b) Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc. 2014, 136, 15813.

    9. [9]

    10. [10]

      Griesbaum, K.; Rao, R.; Leifker, G. J. Org. Chem. 1982, 47, 4975. (b) Kropp, P. J.; Crawford, S. D. J. Org. Chem. 1994, 59, 3102. (c) Klein, H.; Roisnel, T.; Brunean, C.; Derien, S. Chem. Commun. 2012, 48, 11032. (d) Derien, S.; Klein, H.; Brunean, C. Angew. Chem., Int. Ed. 2015, 54, 12112.

    11. [11]

      Michal, R.; Youval, S. Organometallics 1983, 2, 1689. (b) Muriel, N.; Benedicte, S.; Frauke, H.; Brunean, C.; Dixneuf, P. H. J. Organomet. Chem. 1993, 451, 133. (c) Muriel, N.; Christian, B.; Serge, L.; Dixneuf, P. H. Tetrahedron 1993, 49(13), 2629. (d) Olivier, L.; Pierre, H. D. J. Organomet. Chem. 1995, 488, C9. (e) Lukas, J. G.; Jens, P.; Debasis, K. Chem. Commun. 2003, 706. (f) Victorio, C.; Javier, F.; Jose, G. Organometallics 2011, 30, 852. (g) Jena, R. K.; Bhattacgarjee, M. Eur. J. Org. Chem. 2015, 6734.

    12. [12]

      Recently we have studied the reactivity of different kind of ammonium halide/BCF systems in respect to alkynes, and have found that the stability of a suspected σ-adduct seems to be dependent upon the nature of both the halide anion and ammonium counterion (quaternary or else). Unfortunately, the expected intermediates could not been trustworthily observed by NMR spectroscopy. This part of work is still in progress.

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(1362)
  • HTML views(386)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return