Citation: Zhao Zhensheng, Guo Xudong, Li Shayu, Yang Guoqiang. Reaction-Based Ratiometric Fluorescence Probes For Dopamine Detection[J]. Acta Chimica Sinica, ;2016, 74(7): 593-596. doi: 10.6023/A16030160 shu

Reaction-Based Ratiometric Fluorescence Probes For Dopamine Detection

  • Corresponding author: Yang Guoqiang, gqyang@iccas.ac.cn
  • Received Date: 6 April 2016

    Fund Project: the National Natural Science Foundation of China 21233011the National Natural Science Foundation of China 21206122

Figures(6)

  • Dopamine (DA) is one of neurotransmitters in the human central nervous system and plays a very important role on human behavior and brain function. It is necessary to detect dopamine and determine its concentration in organism. Of all the dopamine detection methods reported, fluorescence probes exhibit high efficiency, considerate specifity and potential for real-time detection. Considering the high quantum field and strong trend to form an excimer of pyrene fluorophore, a fluorescent probe hydroxy(mesityl)(pyren-1-yl)borane (HMPB) based on pyrenyl boron compound was designed, synthesized and utilized in dopamine detection. In the phosphate buffer solution (PBS) with the aid of surfactant decyltrimethylammonium bromide, the water-insoluble HMPB could show two fluorescent bands: a monomer band of peaked at 388 nm and an excimer band peaked at 484 nm. The solubility of HMPB improved after addition of DA because it could react with HMPB to form a new compound HMPB-DA and it is better to dissolve in water. The excimer pyrenyl, therefore, gradually dissociated to generate monomer pyrenyl. Accordingly, as the addition of DA, fluorescent intensity at 484 nm (I484 nm) decreased, while intensity at 388 nm (I388 nm) increased. Within 10 min, the fluorescence intensity reached saturation and the ratio of I388 nm to I484 nm have great changed after adding dopamine. HMPB exhibited significant fluorescent response when the concentration range of DA is 10 nmol/L to 600 nmol/L in 10 min, which matched the physiologic concentration of DA. The ratio of I388 nm to I484 nm could be utilized to determine the concentration of dopamine. The detection limit of HMPB was as low as 14.6 nmol/L. HMPB showed no response to common amino acids, saccharides, proteins, ions, catecholamin and other bioactive molecules, even if the interference molecules were at high concentrations. Meanwhile, HMPB can be used to detect dopamine in urine of organisms. With fast response, high sensitivity and accuracy, HMPB represented considerable potential to act as a DA detector in physiological environment, which could become a promising tool in biochemistry, molecular biology and diagnostics investigation.
  • 加载中
    1. [1]

      Robinson, D. L.; Hermans, A.; Seipel, A. T.; Wightman, R. M. Chem. Rev. 2008, 108, 2554; (b) Hyman, S. E.; Malenka, R. C. Nat. Rev. Neurosci. 2001, 2, 695.

    2. [2]

      Li, B.-R.; Hsieh, Y.-J.; Chen, Y.-X.; Chung, Y.-T.; Pan, C.-Y.; Chen, Y.-T. J. Am. Chem. Soc. 2013, 135, 16034.  doi: 10.1021/ja408485m

    3. [3]

      Li, L.; Liu, H.; Shen, Y.; Zhang, J.; Zhu, J. J. Anal. Chem. 2011, 83, 661.  doi: 10.1021/ac102623r

    4. [4]

      Tyagi, P.; Postetter, D.; Saragnese, D.; Randall, C.; Mirski, M.; Gracias, D. Anal. Chem. 2009, 81, 9979; (b) Koehne, J. E.; Marsh, M.; Boakye, A.; Douglas, B.; Kim, I. Y.; Chang, S.-Y.; Jang, D.-P.; Bennet, K. E.; Kimble, C.; Andrews, R. Analyst 2011, 136, 1802; (c) Zhou, J.; Wang, W.; Yu, P.; Xiong, E.; Zhang, X.; Chen, J. RSC. Adv 2014, 4, 52250; (d) Liu, Q.; Zhu, X.; Huo, Z.; He, X.; Liang, Y.; Xu, M. Talanta 2012, 97, 557; (e) Wei, X.; Chang, C.; Li, J. Acta. Chim. Sinica 2013, 71, 951 (in Chinese). (魏小平, 常川, 李建平, 化学学报, 2013, 71, 951.)

    5. [5]

      Zhao, Y.; Zhao, S.; Huang, J.; Ye, F. Talanta 2011, 85, 2650.  doi: 10.1016/j.talanta.2011.08.032

    6. [6]

      Liu, L.; Li, S.; Liu, L.; Deng, D.; Xia, N. Analyst 2012, 137, 3794.  doi: 10.1039/c2an35734h

    7. [7]

      Lee, H.-C.; Chen, T.-H.; Tseng, W.-L.; Lin, C.-H. Analyst 2012, 137, 5352; (b) Su, H.; Sun, B.; Chen, L.; Xu, Z.; Ai, S. Anal. Methods 2012, 4, 3981.

    8. [8]

      Nikolajsen, R. P.; Hansen, Å. M. Anal. Chim. Acta 2001, 449, 1.  doi: 10.1016/S0003-2670(01)01358-7

    9. [9]

      Zhang, L.; Teshima, N.; Hasebe, T.; Kurihara, M.; Kawashima, T. Talanta 1999, 50, 677.  doi: 10.1016/S0039-9140(99)00164-2

    10. [10]

      Ma, Y.; Yang, C.; Li, N.; Yang, X. Talanta 2005, 67, 979; (b) Mu, Q.; Xu, H.; Li, Y.; Ma, S.; Zhong, X. Analyst 2014, 139, 93; (c) Zhao, D.; Song, H.; Hao, L.; Liu, X.; Zhang, L.; Lv, Y. Talanta 2013, 107, 133; (d) Yu, C.; Luo, M.; Zeng, F.; Zheng, F.; Wu, S. Chem. Commun. 2011, 47, 9086.

    11. [11]

      Jackowska, K.; Krysinski, P. Anal. Bioanal. Chem. 2013, 405, 3753; (b) She, G.; Huang, X.; Jin, L.; Qi, X.; Mu, L.; Shi, W. Small 2014, 10, 4685.

    12. [12]

      Feng, J.; Tian, K.; Hu, D.; Wang, S.; Li, S.; Zeng, Y.; Li, Y.; Yang, G. Angew. Chem., Int. Ed. 2011, 50, 8072.  doi: 10.1002/anie.v50.35

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    17. [17]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

Metrics
  • PDF Downloads(0)
  • Abstract views(1034)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return