Citation: Huang Wenguang, Sun Hongfei, Zhang Shujuan. Facile Synthesis and Evaluation of Size-tunable Immobilized Laccase-mediator Microreactor[J]. Acta Chimica Sinica, ;2016, 74(6): 518-522. doi: 10.6023/A16030158 shu

Facile Synthesis and Evaluation of Size-tunable Immobilized Laccase-mediator Microreactor

  • Received Date: 30 March 2016

    Fund Project: the National Natural Science Foundation of China 21522702the National Natural Science Foundation of China 51378254

Figures(5)

  • A series of immobilized laccase-mediator microreactor (LMMR) was prepared in a one-pot process by simultaneously immobilizing Trametes versicolor laccase and acetylacetone (AA) into size-tunable chitosan copper-polyacrylamide hydrogel beads. The polymerization was induced by a laccase-AA-persulfate ternary initiating system and was finished within the chitosan beads at room temperature. The preparation conditions for the LMMR were optimized by an orthogonal array design. The method developed in this work, for the first time, realized the co-immobilization of laccase and mediator in microreactors of tunable size and mechanic strength. Experimental results from scanning electron microscopy and nitrogen adsorption-desorption analysis indicate that the resulting LMMR had a core-shell structure. Chitosan copper served as the mechanical shell, whereas polyacrylamide hydrogel was the core of three-dimensional network. Throughout the hydrogel beads, there were abundant mesopores of size in the range of 2~8 nm. The microreactor beads could endure a 20 N pressure in the axial direction, ensuring the structural integrity in the practical application in wastewater. The loading efficiency of laccase in the microreactor reached up to 93.5%. As compared with the free laccase, the LMMR showed better storage stability and higher tolerance to changes in solution pH and temperature. In the enzymatic conversion of malachite green (MG), benefited from the mediation effect of the immobilized AA, the LMMR still worked after 17 cycling runs (12 h for each cycle), which was 3-fold longer than that of a free laccase-mediator system. The successful recovery of both laccase and mediator is promising to reduce the cost for the application of laccase in wastewater treatment and might be helpful to cut down the secondary pollution from free laccase mediators. These results demonstrate that this novel one-pot synthesis was a useful strategy in the immobilization of laccase. The LMMR has a great potential in large-scale application for dyeing effluent treatment.
  • 加载中
    1. [1]

      Rahman, I. A.; Saad, B.; Shaidan, S.; Rizal, E. S. S. Bioresour. Technol. 2005, 96, 1578.  doi: 10.1016/j.biortech.2004.12.015

    2. [2]

      Berberidou, C.; Poulios, I.; Xekoukoulotakis, N. P.; Mantzavinos, D. Appl. Catal., B 2007, 74, 63.  doi: 10.1016/j.apcatb.2007.01.013

    3. [3]

      Chen, C. C.; Lu, C. S.; Chung, Y. C.; Jan, J. L. J. Hazard. Mater. 2007, 141, 520.  doi: 10.1016/j.jhazmat.2006.07.011

    4. [4]

      Song, X. J.; Wu, B. D.; Zhang, S. J. Acta Chim. Sinica 2014, 72, 461.  doi: 10.6023/A14010027
       

    5. [5]

      Pandey, A.; Singh, P.; Iyengar, L. Int. Biodeterior. Biodegrad. 2007, 59, 73.  doi: 10.1016/j.ibiod.2006.08.006

    6. [6]

      Michniewicz, A.; Ledakowicz, S.; Ullrich, R.; Hofrichter, M. Dyes Pigm. 2008, 77, 295.  doi: 10.1016/j.dyepig.2007.05.015

    7. [7]

      Huang, J.; Zhou, J. Y.; Xiao, H. Y.; Long, S. Y.; Wang, J. T. Acta Chim. Sinica 2005, 63, 1343.
       

    8. [8]

      Durán, N.; Rosa, M. A.; D'Annibale, A.; Gianfreda, L. Enzyme Microb. Technol. 2002, 31, 907.  doi: 10.1016/S0141-0229(02)00214-4

    9. [9]

      Cetinus, S. A.; Sahin, E.; Saraydin, D. Food Chem. 2009, 114, 962.  doi: 10.1016/j.foodchem.2008.10.049

    10. [10]

      Rosevear, A.; Kent, C. A.; Thomson, A. R.; Bucke, C. In Enzyme Engineering, Vol. 4, Eds.: Broun, G.; Manecke, G.; Wingard, L., Jr., Springer, US, 1978, p. 415.

    11. [11]

      Tanaka, H.; Kurosawa, H.; Kokufuta, E.; Veliky, I. A. Biotechnol. Bioeng. 1984, 26, 1393.  doi: 10.1002/(ISSN)1097-0290

    12. [12]

      de Alteriis, E.; Parascandola, P.; Pecorella, M.; Scardi, V. Biotechnol. Tech. 1988, 2, 205.  doi: 10.1007/BF01875766

    13. [13]

      Dealteriis, E.; Parascandola, P.; Salvadore, S.; Scardi, V. J. Chem. Technol. Biotechnol. 1985, 35, 60.  doi: 10.1002/(ISSN)1097-4660

    14. [14]

      Zouari-Mechichi, H.; Mechichi, T.; Dhouib, A.; Sayadi, S.; Martínez, A. T.; Martínez, M. J. Enzyme Microb. Technol. 2006, 39, 141.  doi: 10.1016/j.enzmictec.2005.11.027

    15. [15]

      Yang, H.; Sun, H. F.; Zhang, S. J.; Wu, B. D.; Pan, B. C. Environ. Sci. Pollut. Res. 2015, 22, 10882.  doi: 10.1007/s11356-015-4312-2

    16. [16]

      Sun, H. F.; Huang, W. G.; Yang, H.; Zhang, S. J. J. Colloid Interface Sci. 2016, 471, 20.  doi: 10.1016/j.jcis.2016.03.009

    17. [17]

      Daâssi, D.; Rodríguez-Couto, S.; Nasri, M.; Mechichi, T. Int. Biodeterior. Biodegrad. 2014, 90, 71.

    18. [18]

      Sun, H.; Yang, H.; Huang, W.; Zhang, S. J. Colloid Interface Sci. 2015, 450, 353.  doi: 10.1016/j.jcis.2015.03.037

    19. [19]

      Ikeda, R.; Tanaka, H.; Uyama, H.; Kobayashi, S. Macromol. Rapid Commun. 1998, 19, 423.  doi: 10.1002/(ISSN)1521-3927

    20. [20]

      Nakao, L. S.; Kadiiska, M. B.; Mason, R. P.; Grijalba, M. T.; Augusto, O. Free Radical Biol. Med. 2000, 29, 721.  doi: 10.1016/S0891-5849(00)00374-9

    21. [21]

      Camarero, S.; Ibarra, D.; Martinez, M. J.; Martinez, A. T. Appl. Environ. Microbiol. 2005, 71, 1775.  doi: 10.1128/AEM.71.4.1775-1784.2005

    22. [22]

      Xu, F.; Kulys, J. J.; Duke, K.; Li, K. C.; Krikstopaitis, K.; Deussen, H. J. W.; Abbate, E.; Galinyte, V.; Schneider, P. Appl. Environ. Microbiol. 2000, 66, 2052.  doi: 10.1128/AEM.66.5.2052-2056.2000

    23. [23]

      Fabbrini, M.; Galli, C.; Gentili, P. J. Mol. Catal. B: Enzym. 2002, 16, 231.  doi: 10.1016/S1381-1177(01)00067-4

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    4. [4]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    5. [5]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    6. [6]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    7. [7]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    13. [13]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    18. [18]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    19. [19]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    20. [20]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

Metrics
  • PDF Downloads(0)
  • Abstract views(481)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return