Citation: Qian Xin, Su Meng, Li Fengyu, Song Yanlin. Research Progress in Flexible Wearable Electronic Sensors[J]. Acta Chimica Sinica, ;2016, 74(7): 565-575. doi: 10.6023/A16030156 shu

Research Progress in Flexible Wearable Electronic Sensors

  • Corresponding author: Li Fengyu, forrest@iccas.ac.cn Song Yanlin, ylsong@iccas.ac.cn
  • Received Date: 6 April 2016

    Fund Project: Natural Science Foundation of China 51203166Natural Science Foundation of China 51473172Natural Science Foundation of China 21303218Natural Science Foundation of China 51473173Natural Science Foundation of China 21203209the "Strategic Priority Research Program" of Chinese Academy of Sciences XDA09020000Natural Science Foundation of China 21301180973 Program 2013CB933004

Figures(9)

  • With the development of intelligent terminals, wearable electronic devices show a great market prospect. As one core component of the wearable electronic device, the sensor will exert a significant influence on the design and function of the wearable electronic device in the future. Compared with the traditional electrical sensors, flexible wearable sensors have the advantages of being light, thin, portable, highly integrated and electrically excellent. It has become one of the most popular electronic sensors. This review focused on recent research advances of flexible wearable sensors, including signal transduction mechanisms, general materials, manufacture processes and recent applications. Piezoresistivity, capacitance and piezoelectricity are three traditional signal transduction mechanism. For accessing the dynamic pressure in real time and developing stretchable energy harvesting devices, sensors based on the mechanoluminescent mechanism and triboelectric mechanism are promising. Common materials used in flexible wearable electronic sensors, such as flexible substrates, metals, inorganic semiconductors, organics and carbons, are also introduced. In addition to the continuously mapping function, wearable sensors also have the practical and potential applications, which focused on the temperature and pulse detection, the facial expression recognition and the motion monitoring. Finally, the challenges and future development of flexible wearable sensors are presented.
  • 加载中
    1. [1]

      Maheshwari, V.; Saraf, R. Angew. Chem., Int. Ed. 2008, 47, 7808.  doi: 10.1002/anie.v47:41

    2. [2]

      Tee1, B. C.-K.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W.-G.; Wang, H. L.; Mei, P.; Chou, H.-H.; Cui, B. X.; Deisseroth, K.; Ng, T. N.; Bao, Z. N. Science 2015, 350, 313.  doi: 10.1126/science.aaa9306

    3. [3]

      Velliste, M.; Perel, S.; Spalding, M. C.; Whitford, A. S.; Schwartz, A. B. Nature 2008, 453, 1098.  doi: 10.1038/nature06996

    4. [4]

      Shintaku, H.; Nakagawa, T.; Kitagawa, D.; Tanujaya, H.; Kawano, S.; Ito, J. Sensor. Actuat. A-Phys. 2010, 158, 183.  doi: 10.1016/j.sna.2009.12.021

    5. [5]

      Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. A. Nat. Commun. 2014, 5, 5028.  doi: 10.1038/ncomms6028

    6. [6]

      Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y.-D.; Lim, H.; Kim, S. Y.; Ko, H. ACS Nano 2014, 8, 4689;(b) Pan, L.; Chortos, A.; Yu, G.; Wang, Y.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. Nat. Commun. 2014, 5, 3002.

    7. [7]

      Li, R.-Z.; Hu, A.; Zhang, T.; Oakes, K. D. ACS Appl. Mater. Interfaces 2014, 6, 21721.  doi: 10.1021/am506987w

    8. [8]

      Pan, C.; Dong, L.; Zhu, G.; Niu, S.; Yu, R.; Yang, Q.; Liu, Y.; Wang, Z. L. Nature Photon. 2013, 7, 752.  doi: 10.1038/nphoton.2013.191

    9. [9]

      Koeppe, R.; Bartu, P.; Bauer, S.; Sariciftci, N. S. Adv. Mater. 2009, 21, 3510.  doi: 10.1002/adma.v21:34

    10. [10]

      Wang, S.; Lin, L.; Wang, Z. L. Nano Energy 2015, 11, 436.  doi: 10.1016/j.nanoen.2014.10.034

    11. [11]

      Choong, C.-L.; Shim, M.-B.; Lee, B.-S.; Jeon, S.; Ko, D.-S.; Kang, T.-H.; Bae, J.; Lee, S. H.; Byun, K.-E.; Im, J.; Jeong, Y. J.; Park, C. E.; Park, J.-J.; Chung, U. I. Adv. Mater. 2014, 26, 3451.  doi: 10.1002/adma.v26.21

    12. [12]

      Timsit, R. S. IEEE Trans. Compon. Packag. Technol. 1999, 22, 85.  doi: 10.1109/6144.759357

    13. [13]

      Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. Nat. Commun. 2014, 5, 3132.

    14. [14]

      Zhao, J.; Wang, G. L.; Yang, R.; Lu, X. B.; Cheng, M.; He, C. L.; Xie, G. B.; Meng, J. L.; Shi, D. X.; Zhang, G. Y. ACS Nano 2015, 9, 1622.  doi: 10.1021/nn506341u

    15. [15]

      Su, M.; F. Li, Y.; Chen, S. R.; Huang, Z. D.; Qin, M.; Li, W. B.; Zhang, X. Y.; Song, Y. L. Adv. Mater. 2016, 28, 1369.  doi: 10.1002/adma.v28.7

    16. [16]

      Lee, H.-K.; Chung, J.; Chang, S.-I.; Yoon, E. J. Micromech. Microeng. 2011, 21, 035010.  doi: 10.1088/0960-1317/21/3/035010

    17. [17]

      Frutiger, A.; Muth, J. T.; Vogt, D. M.; Mengüç, Y.; Campo, A.; Valentine, A. D.; Walsh, C. J.; Lewis, J. A. Adv. Mater. 2015, 27, 2440.  doi: 10.1002/adma.201500072

    18. [18]

      Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Nature Nanotechnol. 2011, 6, 788.  doi: 10.1038/nnano.2011.184

    19. [19]

      Wang, Z. L.; Song, J. Science 2006, 312, 242.  doi: 10.1126/science.1124005

    20. [20]

      Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwodiauer, R.; Bauer, S.; Lacour, S. P.; Wagner, S. Appl. Phys. Lett. 2006, 89, 073501.  doi: 10.1063/1.2335838

    21. [21]

      Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.-S.; Huang, Y.; Damadoran, A. R.; Xia, J.; Martin, L. W.; Huang, Y.; Rogers, J. A. Nat. Commun. 2014, 5, 4496.

    22. [22]

      Nour, E. S.; Sandberg, M. O.; Willander, M.; Nur, O. Nano Energy 2014, 9, 221.  doi: 10.1016/j.nanoen.2014.07.014

    23. [23]

      Zhang, X.; Hillenbrand, J.; Sessler, G. M. J. Appl. Phys. 2007, 101, 054114.  doi: 10.1063/1.2562413

    24. [24]

      Yun, S.; Park, S.; Park, B.; Kim, Y.; Park, S. K.; Nam, S.; Kyung, K.-U. Adv. Mater. 2014, 26, 4474.  doi: 10.1002/adma.v26.26

    25. [25]

      Sun, Y.; Rogers, J. A. J. Mater. Chem. 2007, 17, 832.  doi: 10.1039/b614793c

    26. [26]

      Akinwande, D.; Petrone, N.; Hone, J. Nat. Commun. 2014, 5, 5678.  doi: 10.1038/ncomms6678

    27. [27]

      Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Adv. Mater. 2012, 24, 3326.  doi: 10.1002/adma.v24.25

    28. [28]

      Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Nature Mater. 2009, 8, 494.  doi: 10.1038/nmat2459

    29. [29]

      Brosteaux, D.; Axisa, F.; Gonzalez, M.; Vanfleteren, J. IEEE Electron Device Lett. 2007, 28, 552.  doi: 10.1109/LED.2007.897887

    30. [30]

      Zhang, Y. H.; Wang, S. D.; Li, X. T.; Fan, J. A.; Xu, S.; Song, Y. M.; Choi, K. J.; Yeo, W. H.; Lee, W.; Nazaar, S. N.; Lu, B. W.; Yin, L.; Hwang, K. C.; Rogers, J. A.; Huang, Y. G. Adv. Funct. Mater. 2014, 24, 2028.  doi: 10.1002/adfm.v24.14

    31. [31]

      Choi, W. M.; Song, J.; Khang, D.-Y.; Jiang, H.; Huang, Y. Y.; Rogers, J. A. Nano Lett. 2007, 7, 1655.  doi: 10.1021/nl0706244

    32. [32]

      Kim, D.-H.; Song, J.; Choi, W. M.; Kim, H.-S.; Kim, R.-H.; Liu, Z.; Huang, Y. Y.; Hwang, K.-C.; Zhang, Y.-W.; Rogers, J. A. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 18675.  doi: 10.1073/pnas.0807476105

    33. [33]

      Fan, J. A.; Yeo, W. H.; Su, Y. W.; Hattori, Y.; Lee, W.; Jung, S. Y.; Zhang, Y. H.; Liu, Z. J.; Cheng, H. Y.; Falgout, L.; Bajema, M.; Coleman, T.; Gregoire, D.; Larsen, R. J.; Huang, Y. G.; Rogers, J. A. Nat. Commun. 2014, 5, 3266.

    34. [34]

      Jiang, J. K.; Bao, B.; Li, M. Z.; Sun, J. Z.; Zhang, C.; Li, Y.; Li, F. Y.; Yao, X.; Song, Y. L. Adv. Mater. 2016, 28, 1420.  doi: 10.1002/adma.v28.7

    35. [35]

      Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M.-B.; Jeon, S.; Chung, D.-Y.; Bae, J.; Park, J.; Jeong, U.; Kim, K. Nature Nanotechnol. 2012, 7, 803.  doi: 10.1038/nnano.2012.206

    36. [36]

      Wang, X.; Zhang, H.; Yu, R.; Dong, L.; Peng, D.; Zhang, A.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Adv. Mater. 2015, 27, 2324.  doi: 10.1002/adma.v27.14

    37. [37]

      Park, S.; Pitner, G.; Giri, G.; Koo, J. H.; Park, K.; Kim, H.; Wang, R.; Sinclair, H. S.; Wong, P.; Bao, Z. N. Adv. Mater. 2015, 27, 2656.  doi: 10.1002/adma.v27.16

    38. [38]

      Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.  doi: 10.1002/adma.v23.2

    39. [39]

      Wang, H. L.; Wei, P.; Li, Y. X.; Han, J.; Lee, H. R.; Naab, B. D.; Liu, N.; Wang, C. G.; Adijanto, E.; Tee, B. C. K.; Morishita, S.; Li, Q. C.; Gao, Y. L.; Cui, Y.; Bao, Z. N. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 4776.  doi: 10.1073/pnas.1320045111

    40. [40]

      Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9966.  doi: 10.1073/pnas.0401918101

    41. [41]

      Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Nature Mater. 2010, 9, 859.  doi: 10.1038/nmat2834

    42. [42]

      Schwartz, G.; Tee, B. C. K.; Mei, J.; Appleton, A. L.; Kim, D. H.; Wang, H.; Bao, Z. N. Nat. Commun. 2013, 4, 1859.  doi: 10.1038/ncomms2832

    43. [43]

      Zang, Y.; Zhang, F.; Huang, D.; Gao, X.; Di, C.-A.; Zhu, D. B. Nat. Commun. 2015, 6, 6269.  doi: 10.1038/ncomms7269

    44. [44]

      Chun, K.-Y.; Oh, Y.; Rho, J.; Ahn, J.-H.; Kim, Y.-J.; Choi, H. R.; Baik, S. Nature Nanotechnol. 2010, 5, 853.  doi: 10.1038/nnano.2010.232

    45. [45]

      Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M.; Duan, X. F.; Lee, Y. H. Nature Mater. 2013, 12, 403.  doi: 10.1038/nmat3572

    46. [46]

      Bai, C. L. Chin. Sci. Bull. 2009, 54, 1941.

    47. [47]

      Kuang, M. X.; Wang, J. X.; Wang, L. B.; Song, Y. L. Acta Chim. Sinica 2012, 70, 1889.
       

    48. [48]

      Sun, J. Z.; Kuang, M. X.; Song, Y. L. Prog. Chem. 2015, 27, 979.
       

    49. [49]

      Kuang, M. X.; Wang, L. B.; Song, Y. L. Adv. Mater. 2014, 26, 6950.  doi: 10.1002/adma.v26.40

    50. [50]

      Zhang, Z. L.; Zhang, X. Y.; Xin, Z. Q.; Deng, M. M.; Wen, Y. Q.; Song, Y. L. Adv. Mater. 2013, 25, 6714.  doi: 10.1002/adma.v25.46

    51. [51]

      Su, B.; Zhang, C.; Chen, S. R.; Zhang, X. Y.; Chen, L. F.; Wu, Y. C.; Nie, Y. W.; Kan, X. N.; Song, Y. L.; Jiang, L. Adv. Mater. 2014, 26, 2501.  doi: 10.1002/adma.v26.16

    52. [52]

      Chen, S. R.; Su, M.; Zhang, C.; Gao, M.; Bao, B.; Yang, Q.; Su, B.; Song, Y. L. Adv. Mater. 2015, 27, 3928.  doi: 10.1002/adma.201500225

    53. [53]

      Han, I. Y.; Kim, S. J. Sens. Actuators A 2008, 141, 52.  doi: 10.1016/j.sna.2007.07.020

    54. [54]

      Hattori, Y.; Falgout, L.; Lee, W.; Jung, S. Y.; Poon, E.; Lee, J. W.; Na, I.; Geisler, A.; Sadhwani, D.; Zhang, Y. H.; Su, Y. W.; Wang, X. Q.; Liu, Z. J.; Xia, J.; Cheng, H. Y.; Webb, R. C.; Bonifas, A. P.; Won, P.; Jeong, J. W.; Jang, K. I.; Song, Y. M.; Nardone, B.; Nodzenski, M.; Fan, J. A.; Huang, Y. G.; West, D. P.; Paller, A. S.; Alam, M.; Yeo, W. H.; Rogers, J. A. Adv. Healthcare Mater. 2014, 3, 1597.  doi: 10.1002/adhm.v3.10

    55. [55]

      Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S. Adv. Mater. DOI: 10.1002/adma. 201504659.  doi: 10.1002/adma.201504659

    56. [56]

      Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. N. Nat. Commun. 2013, 4, 1859.  doi: 10.1038/ncomms2832

    57. [57]

      Pang, C. F.; Koo, J. H.; Nguyen, A.; Caves, J. M.; Kim, M.; Chortos, A.; Kim, K.; Wang, P. J.; Tok, J. B.-H.; Bao, Z. N. Adv. Mater. 2015, 27, 634.  doi: 10.1002/adma.201403807

    58. [58]

      Belanger, M. C.; Marois, Y. J. Biomed. Mater. Res. 2001, 58, 467.  doi: 10.1002/jbm.1043

    59. [59]

      Shan, C. F.; Gong, S. G.; McOwan, P. W. Image Vision Comput. 2009, 27, 803.  doi: 10.1016/j.imavis.2008.08.005

    60. [60]

      Park, J. J.; Hyun, W. J.; Mun, S. C.; Park, Y. T.; Park, O. O. ACS Appl. Mat. Interfaces 2015, 7, 6317.  doi: 10.1021/acsami.5b00695

    61. [61]

      Ryu, S.; Lee, P.; Chou, J. B.; Xu, R.; Zhao, R.; Hart, A. J.; Kim, S.-G. ACS Nano 2015, 9, 5929.  doi: 10.1021/acsnano.5b00599

    62. [62]

      Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. Nature Nanotechnol. 2011, 6, 296.  doi: 10.1038/nnano.2011.36

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(0)
  • Abstract views(8518)
  • HTML views(3493)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return