Citation: Qiu Di, Qiu Menglong, Ma Rong, Zhang Yan, Wang Jianbo. Nitrogen Group Retaining Reaction in the Transformation of Diazo Compounds[J]. Acta Chimica Sinica, ;2016, 74(6): 472-487. doi: 10.6023/A16030153 shu

Nitrogen Group Retaining Reaction in the Transformation of Diazo Compounds

  • Corresponding author: Qiu Di, qiudi@pku.edu.cn
  • Received Date: 29 March 2016

    Fund Project: the scientific research funding of Tianjin Normal University 5RL138

Figures(49)

  • Diazo compounds represent a type of very important synthetic intermediates, which demonstrate wide applications in organic synthesis, continuous-in-flow technology, polymer synthesis, medicinal chemistry, chemical biology, material science and many other fields. On the other hand, diazo intermediates can be easily prepared from commercial available substrates through facile transformations, such as base-promoted decomposition of N-tosylhydrazones, diazo-transfer reaction, diazotization of alkyl amines, oxidation of hydrazones, decomposition of N-nitroso compounds. Traditional transformations of diazo compounds include nucleophilic addition/substitution by using diazo compounds as the nucleophiles, ylide type reactions, dimerization or olefination, Wolff rearrangement, transition-metal-carbene or carbenoid mediated X—H insertion reactions, catalytic cyclopropanations or cyclopropenations, and the recently developed transition-metal-catalyzed carbenoid cross-coupling reactions. In addition to these classic reactions, the diazo compounds also undergo nitrogen group retaining reactions, in which the diazo moiety is incorporated into the nitrogen-containing moiety in the target molecules. This strategy has provided an efficient and selective synthetic approach towards nitrogen atom containing functional molecules, especially for the synthesis of various N-heterocyclic compounds. Among them, the enantioselective C—N bond forming reaction as well as the asymmetric N-heterocyclic scaffold construction has important synthetic value and remains great challenge to the organic chemists. Thus, nitrogen component retaining reactions of diazo compounds has opened up a superior avenue in organic synthesis. Considering about the significant importance and the great growth in the past decade of this area, this review article will focus on the nitrogen group retaining reaction of diazo compounds. According to the reaction mechanism of these transformations, this review will be divided into the following parts: diazo compounds as nucleophiles, diazo compounds as 1, 3-dipoles in cycloaddition reaction, diazo compounds as electrophiles, intramolecular reactions of vinyldiazo compounds, reduction reaction, and miscellaneous transformation. We hope that this review will corroborate the practical use of this research area as a convenient and valuable synthetic strategy.
  • 加载中
    1. [1]

      Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091; (b) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577; (c) Padwa, A.; Austin, D. J. Angew. Chem. Int. Ed. Engl. 1994, 33, 1797; (d) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223; (e) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911; (f) Padwa, A. J. Organomet. Chem. 2001, 617-618, 3; (g) Davies, H. M. L.; Antoulinakis, E. G. J. Organomet. Chem. 2001, 617-618, 47. (h) Timmons, D. J.; Doyle, M. P. J. Organomet. Chem. 2001, 617-618, 98. (i) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50; (j) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (k) Singh, G. S.; Mdee, L. K. Curr. Org. Chem. 2003, 7, 1821. (l) Gois, P. M. P.; Afonso, C. A. M. Eur. J. Org. Chem. 2004, 3773. (m) Díaz-Requejo, M. M.; Pérez, P. J. J. Organomet. Chem. 2005, 690, 5441; (n) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. Eur. J. Org. Chem. 2005, 1479; (o) Davies, H. M. L.; Nikolai, J. Org. Biomol. Chem. 2005, 3, 4176. (p) Singh, G. S. Curr. Org. Synth. 2005, 2, 377. (q) Wee, A. G. H. Curr. Org. Synth. 2006, 3, 499. (r) Noels, A. F. Angew. Chem. Int. Ed. 2007, 46, 1208.

    2. [2]

      Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley-Interscience: New York, 1998. (b) For the recent comprehensive review of diazo compounds, see: Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.

    3. [3]

      Maas, G. Angew. Chem. Int. Ed. 2009, 48, 8186.  doi: 10.1002/anie.200902785

    4. [4]

    5. [5]

      Zhang, Y.; Wang, J. Chem. Commun. 2009, 5350.

    6. [6]

      Hashimoto, T.; Maruoka, K. Bull. Chem. Soc. Jpn. 2013, 86, 1217.  doi: 10.1246/bcsj.20130164

    7. [7]

      Yao, W.; Wang, J. Org. Lett. 2003, 5, 1527.  doi: 10.1021/ol0343257

    8. [8]

      Arai, S.; Hasegawa, K.; Nishida, A. Tetrahedron Lett. 2004, 45, 1023. (b) Hasegawa, K.; Arai, S.; Nishida, A. Tetrahedron 2006, 62, 1390.

    9. [9]

      Likhar, P. R.; Roy, S.; Roy, M.; Subhas, M. S.; Kantam, M. L. Synlett 2008, 1283. (b) Likhar, P. R.; Roy, S.; Roy, M.; Subhas, M. S.; Kantam, M. L. Catal. Commun. 2009, 10, 728.

    10. [10]

      Trost, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. J. Am. Chem. Soc. 2012, 134, 2075.  doi: 10.1021/ja206995s

    11. [11]

      Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005, 127, 9360.  doi: 10.1021/ja051922a

    12. [12]

      Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 10054.  doi: 10.1021/ja0713375

    13. [13]

      Hashimoto, T.; Maruoka, K. Synthesis 2008, 3703.

    14. [14]

      Hashimoto, T.; Kimura, H.; Nakatsu, H.; Maruoka, K. J. Org. Chem. 2011, 76, 6030.  doi: 10.1021/jo2005999

    15. [15]

      Doyle, M. P.; Kundu, K.; Russell, A. E. Org. Lett. 2005, 7, 5171.  doi: 10.1021/ol052003s

    16. [16]

      Kundu, K.; Doyle, M. P. Tetrahedron: Asymmetry2006, 17, 574.  doi: 10.1016/j.tetasy.2005.12.030

    17. [17]

      Liu, Y.; Zhang, Y.; Jee, N.; Doyle, M. P. Org. Lett. 2008, 10, 1605.  doi: 10.1021/ol800298n

    18. [18]

      Zhou, L.; Doyle, M. P. Org. Lett. 2010, 12, 796.  doi: 10.1021/ol902872y

    19. [19]

      Xu, X.; Hu, W.-H.; Doyle, M. P. Angew. Chem. Int. Ed. 2011, 50, 6392.  doi: 10.1002/anie.201102405

    20. [20]

      Mao, H.; Lin, A.; Shi, Y.; Mao, Z.; Zhu, X.; Li, W.; Hu, H.; Cheng, Y.; Zhu, C. Angew. Chem. Int. Ed. 2013, 52, 6288.  doi: 10.1002/anie.201301509

    21. [21]

      Peng, C.; Cheng, J.; Wang, J. J. Am. Chem. Soc. 2007, 129, 8708.  doi: 10.1021/ja073010+

    22. [22]

      Ye, F.; Wang, C.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2014, 53, 11625.  doi: 10.1002/anie.201407653

    23. [23]

      Rodriguez, J. B. Synthesis 2014, 46, 1129. (b) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191. (c) Hashimoto, T.; Maruoka, K. Org. Biomol. Chem. 2008, 6, 829.

    24. [24]

      Lozhkin, S. S.; Petrov, D. V.; Dokichev, V. A.; Tomilov, Y. V.; Nefedov, O. M. Chem. Heterocycl. Comp. 2009, 45, 937. (b) Novikov, R. A.; Platonov, D. N.; Dokichev, V. A.; Tomilov, Y. V.; Nefedov, O. M. Russ. Chem. Bull. Int. Ed. 2010, 59, 984. (c) Ovchinnikov, M. Y.; Yangirov, T. A.; Lobov, A. N.; Sultanova, R. M.; Khursan, S. L. Int. J. Chem. Kinet. 2013, 45, 499. (d) Krishna, P. R.; Sekhar, E. R.; Mongin, F. Tetrahedron Lett. 2008, 49, 6768; (e) Sun, H.; Wang, X.; Zhan, M.; Liu, J.; Xie, Y. Tetrahedron Lett. 2013, 54, 3846. (f) Wang, W.; Simovic, D. D.; Di, M.; Fieber, L.; Rein, K. S. Bioorg. Med. Chem. Lett. 2013, 23, 1949. (g) Ruano, J. L. G.; Alonso, M.; Cruz, D.; Fraile, A.; Martín, M. R.; Peromingo, M. T.; Tito, A.; Yuste, F. Tetrahedron 2008, 64, 10546. (h) Cruz, D. C.; Yuste, F.; Martín, M. R.; Tito, A.; Ruano, J. L. G. J. Org. Chem. 2009, 74, 3820. (i) Kissane, M.; Lawrence, S. E.; Maguire, A. R. Org. Biomol. Chem. 2010, 8, 2735. (j) Hamadi, N. B.; Msaddek, M. C. R. Chimie 2011, 14, 997. (k) Goulioukina, N. S.; Makukhin, N. N.; Beletskaya, I. P. Tetrahedron 2011, 67, 9535; (l) Liu, R.; Yin, J.; Li, J.; Wu, J.; Chen, G.; Jin, Y.; Wang, J. Chin. J. Org. Chem. 2012, 32, 544 (in Chinese).(刘冉冉, 殷军港, 李家柱, 武进, 陈冠龙, 金英学, 王进军, 有机化学, 2012, 32, 544.) (m) Yang, Z.; Wang, Z.; Xu, X.; Liu, Y.; Qi, C.; Wang, J. Chin. J. Org. Chem. 2012, 32, 2099 (in Chinese).(杨泽, 王振, 徐希森, 刘洋, 祁彩霞, 王进军, 有机化学, 2012, 32, 2099.) (n) Xie, J.-W.; Wang, Z.; Yang, W.-J.; Kong, L.-C.; Xu, D.-C. Org. Biomol. Chem. 2009, 7, 4352; (o) Maurer, S.; Jikyo, T.; Maas, G. Eur. J. Org. Chem. 2009, 2195; (p) Hou, Y.; Cai, C.; Yu, G. Synlett 2016, 27, [DOI: 10.1055/s-0035-1560596].

    25. [25]

      Gioiello, A.; Khamidullina, A.; Fulco, M. C.; Venturoni, F.; Zlotsky, S.; Pellicciari, R. Tetrahedron Lett. 2009, 50, 5978; (b) Wang, L.; Huang, J.; Gong, X.; Wang, J. Chem. Eur. J. 2013, 19, 7555.

    26. [26]

      Slobodyanyuk, E. Y.; Artamonov, O. S.; Shishkin, O. V.; Mykhailiuk, P. K. Eur. J. Org. Chem. 2014, 2487; (b) Mykhailiuk, P. K. Chem. Eur. J. 2014, 20, 4942; (c) Artamonov, O. S.; Mykhailiuk, P. K.; Voievoda, N. M.; Volochnyuk, D. M.; Komarov, I. V. Synthesis 2010, 443; (d) Artamonov, O. S.; Slobodyanyuk, E. Y.; Shishkin, O. V.; Komarov, I. V.; Mykhailiuk, P. K. Synthesis 2013, 45, 225; (e) Li, T.-R.; Duan, S.-W.; Ding, W.; Liu, Y.-Y.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. J. Org. Chem. 2014, 79, 2296.

    27. [27]

      Muruganantham, R.; Namboothiri, I. J. Org. Chem. 2010, 75, 2197; (b) Verma, D.; Mobin, S.; Namboothiri, I. N. N. J. Org. Chem. 2011, 76, 4764; (c) Kumar, R.; Namboothiri, I. N. N. Org. Lett. 2011, 13, 4016; (d) Kumar, R.; Nair, D.; Namboothiri, I. N. N. Tetrahedron 2014, 70, 1794; (e) Shelke, A. M.; Suryavanshi, G. Org. Biomol. Chem. 2015, 13, 8669.

    28. [28]

      Suga, H.; Furihata, Y.; Sakamoto, A.; Itoh, K.; Okumura, Y.; Tsuchida, T.; Kakehi, A.; Baba, T. J. Org. Chem. 2011, 76, 7377; (b) Gao, L.; Hwang, G.-S.; Lee, M. Y.; Ryu, D. H. Chem. Commun. 2009, 5460; (c) Lee, S. I.; Kim, K. E.; Hwang, G.-S.; Ryu, D. H. Org. Biomol. Chem. 2015, 13, 2745; (d) Du, T.; Du, F.; Ning, Y.; Peng, Y. Org. Lett. 2015, 17, 1308.

    29. [29]

      Mohanan, K.; Martin, A. R.; Toupet, L.; Smietana, M.; Vasseur, J.-J. Angew. Chem. Int. Ed. 2010, 49, 3196; (b) Martin, A. R.; Mohanan, K.; Toupet, L.; Vasseur, J.-J.; Smietana, M. Eur. J. Org. Chem. 2011, 3184.

    30. [30]

      He, S.; Chen, L.; Niu, Y.-N.; Wu, L.-Y.; Liang, Y.-M. Tetrahedron Lett. 2009, 50, 2443; (b) Cheung, K. M. J.; Reynisson, J.; McDonald, E. Tetrahedron Lett. 2010, 51, 5915; (c) McGrath, N. A.; Raines, R. T. Chem. Sci. 2012, 3, 3237. (d) Pramanik, M. M. D.; Kant, R.; Rastogi, N. Tetrahedron 2014, 70, 5214; (e) Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Green Chem. 2009, 11, 156; (f) Friscourt, F.; Fahrni, C. J.; Boons, G.-J. Chem. Eur. J. 2015, 21, 13996.

    31. [31]

      Li, F.; Nie, J.; Sun, L.; Zheng, Y.; Ma, J.-A. Angew. Chem. Int. Ed. 2013, 52, 6255.  doi: 10.1002/anie.201301870

    32. [32]

      Mykhailiuk, P. K. Angew. Chem. Int. Ed. 2015, 54, 6558; (b) Mykhailiuk, P. K. Org. Biomol. Chem. 2015, 13, 3438; (c) Mykhailiuk, P. K. Eur. J. Org. Chem. 2015, 7235.

    33. [33]

      Shoji, Y.; Hari, Y.; Aoyama, T. Tetrahedron Lett. 2004, 45, 1769; (b) Jin, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2007, 46, 3387; (c) Liu, Z.; Shi, F.; Martinez, P. D. G.; Raminelli, C.; Larock, R. C. J. Org. Chem. 2008, 73, 219;. (d) Hari, Y.; Sone, R.; Aoyama, T. Org. Biomol. Chem. 2009, 7, 2804; (e) Wang, C.-D.; Liu, R.-S. Org. Biomol. Chem. 2012, 10, 8948; (f) Li, P.; Zhao, J.; Wu, C.; Larock, R. C.; Shi, F. Org. Lett. 2011, 13, 3340; (g) Li, P.; Wu, C.; Zhao, J.; Rogness, D. C.; Shi, F. J. Org. Chem. 2012, 77, 3149.

    34. [34]

      Pérez-Aguilar, M. C.; Valdés, C. Angew. Chem. Int. Ed. 2013, 52, 7219; (b) Sha, Q.; Wei, Y. Synthesis 2013, 45, 413; (c) Merchant, R. R.; Allwood, D. M.; Blakemore, D. C.; Ley, S. V. J. Org. Chem. 2014, 79, 8800; (d) Pérez-Aguilar, M. C.; Valdés, C. Angew. Chem. Int. Ed. 2015, 54, 13729.

    35. [35]

      Kang, T.; Kim, W.-Y.; Yoon, Y.; Kim, B. G.; Lee, H.-Y. J. Am. Chem. Soc. 2011, 133, 18050; (b) Qiao, Y.; Han, K.-L. Org. Biomol. Chem. 2014, 12, 1220; (c) Lee, H.-Y. Acc. Chem. Res. 2015, 48, 2308.

    36. [36]

      Zhang, F.-G.; Wei, Y.; Yi, Y.-P.; Nie, J.; Ma, J.-A. Org. Lett. 2014, 16, 3122.  doi: 10.1021/ol501249h

    37. [37]

      Dullweber, F.; Montforts, F.-P. Synlett 2008, 3213; (b) Mlostoń, G.; Urbaniak, K.; Linden, A.; Heimgartner, H. Tetrahedron 2009, 65, 8191; (c) Assadi, N.; Pogodin, S.; Agranat, I. Eur. J. Org. Chem. 2011, 6773; (d) Nikolaev, V. A.; Ivanov, A. V.; Shakhmin, A. A.; Sieler, J.; Rodina, L. L. Tetrahedron Lett. 2012, 53, 3095; (e) Nikolaev, V. A.; Ivanov, A. V.; Rodina, L. L.; Mlostoń, G. Beilstein J. Org. Chem. 2013, 9, 2751.

    38. [38]

      Torres-Alacan, J.; Sander, W. J. Org. Chem. 2008, 73, 7118.  doi: 10.1021/jo800955w

    39. [39]

      Chen, J.-H.; Liu, S.-R.; Chen, K. Chem. Asian J. 2010, 5, 328.  doi: 10.1002/asia.v5:2

    40. [40]

      Chen, Z.; Fan, S.-Q.; Zheng, Y.; Ma, J.-A. Chem. Commun. 2015, 51, 16545.  doi: 10.1039/C5CC07324C

    41. [41]

      Wang, S.; Yang, L.-J.; Zeng, J.-L.; Zheng, Y.; Ma, J.-A. Org. Chem. Front. 2015, 2, 1468.  doi: 10.1039/C5QO00219B

    42. [42]

      Sakač, M. N.; Gaković, A. R.; Csanádi, J. J.; Djurendić, E. A.; Klisurić, O.; Kojić, V.; Bogdanović, G.; Gaši, K. M. P. Tetrahedron Lett. 2009, 50, 4107. (b) Mani, N. S.; Fitzgerald, A. E. J. Org. Chem. 2014, 79, 8889.

    43. [43]

      Supurgibekov, M. B.; Hennig, L.; Schulze, B.; Nikolaev, V. A. Russ. J. Org. Chem. 2008, 44, 1840; (b) Supurgibekov, M. B.; Zakharova, V. M.; Sieler, J.; Nikolaev, V. A. Tetrahedron Lett. 2011, 52, 341; (c) Muthusamy, S.; Srinivasan, P. Tetrahedron Lett. 2009, 50, 1331; (d) Bel Abed, H.; Mammoliti, O.; Van Lommen, G.; Herdewijn, P. Tetrahedron Lett. 2012, 53, 6489; (e) Bel Abed, H.; Mammoliti, O.; Bande, O.; Van Lommen, G.; Herdewijn, P. J. Org. Chem. 2013, 78, 7845; (f) Bel Abed, H.; Mammoliti, O.; Bande, O.; Van Lommen, G.; Herdewijn, P. Org. Biomol. Chem. 2014, 12, 7159; (g) Bel Abed, H.; Bande, O.; Mammoliti, O.; Van Lommen, G.; Herdewijn, P. Tetrahedron Lett. 2013, 54, 7056; (h) Nikolaev, V. A.; Cantillo, D.; Kappe, C. O.; Medvedev, J. J.; Prakash, G. K. S.; Supurgibekov, M. B. Chem. Eur. J. 2016, 22, 174.

    44. [44]

      Mao, H.; Lin, A.; Tang, Z.; Hu, H.; Zhu, C.; Cheng, Y. Chem. Eur. J. 2014, 20, 2454.  doi: 10.1002/chem.v20.9

    45. [45]

      Yasui, E.; Wada, M.; Takamura, N. Tetrahedron Lett. 2009, 50, 4762; (b) Yasui, E.; Wada, M.; Takamura, N. Tetrahedron 2009, 65, 461; (c) Yasui, E.; Wada, M.; Nagumo, S.; Takamura, N. Tetrahedron 2013, 69, 4325.

    46. [46]

      van Berkel, S. S.; Brauch, S.; Gabriel, L.; Henze, M.; Stark, S.; Vasilev, D.; Wessjohann, L. A.; Abbas, M.; Westermann, B. Angew. Chem. Int. Ed. 2012, 51, 5343; (b) Kuznetsov, A.; Gulevich, A. V.; Wink, D. J.; Gevorgyan, V. Angew. Chem. Int. Ed. 2014, 53, 9021.

    47. [47]

      Li, L.; Chen, J.-J.; Li, Y.-J.; Bu, X.-B.; Liu, Q.; Zhao, Y.-L. Angew. Chem. Int. Ed. 2015, 54, 12107.  doi: 10.1002/anie.201505064

    48. [48]

      Li, W.; Liu, X.; Hao, X.; Hu, X.; Chu, Y.; Cao, W.; Qin, S.; Hu, C.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2011, 133, 15268.  doi: 10.1021/ja2056159

    49. [49]

      Santos, F. M. F.; Rosa, J. N.; André, V.; Duarte, M. T.; Veiros, L. F.; Gois, P. M. P. Org. Lett. 2013, 15, 1760; (b) António, J. P. M.; Frade, R. F. M.; Santos, F. M. F.; Coelho, J. A. S.; Afonso, C. A. M.; Gois, P. M. P.; Trindade, A. F. RSC Adv. 2014, 4, 29352.

    50. [50]

      Mei, L.-Y.; Tang, X.-Y.; Shi, M. Chem. Eur. J. 2014, 20, 13136.  doi: 10.1002/chem.201403990

    51. [51]

      Zheng, J.; Qi, J.; Cui, S. Org. Lett. 2016, 18, 128.  doi: 10.1021/acs.orglett.5b03317

    52. [52]

      Babinski, D. J.; Aguilar, H. R.; Still, R.; Frantz, D. E. J. Org. Chem. 2011, 76, 5915.  doi: 10.1021/jo201042c

    53. [53]

      Babinski, D. J.; Bao, X.; El Arba, M.; Chen, B.; Hrovat, D. A.; Borden, W. T.; Frantz, D. E. J. Am. Chem. Soc. 2012, 134, 16139.  doi: 10.1021/ja307213m

    54. [54]

      Guo, H.; Zhang, D.; Zhu, C.; Li, J.; Xu, G.; Sun, J. Org. Lett.2014, 16, 3110.  doi: 10.1021/ol5012339

    55. [55]

      Xu, G.; Zhu, C.; Gu, W.; Li, J.; Sun, J. Angew. Chem. Int. Ed. 2015, 54, 883.  doi: 10.1002/anie.201409845

    56. [56]

      Jordão, A. K.; Afonso, P. P.; Ferreira, V. F.; de Souza, M. C. B. V.; Almeida, M. C. B.; Beltrame, C. O.; Paiva, D. P.; Wardell, S. M. S. V.; Wardell, J. L.; Tiekink, E. R. T.; Damaso, C. R.; Cunha, A. C. Eur. J. Med. Chem. 2009, 44, 3777.  doi: 10.1016/j.ejmech.2009.04.046

    57. [57]

      Campos, V. R.; Abreu, P. A.; Castro, H. C.; Rodrigues, C. R.; Jordão, A. K.; Ferreira, V. F.; de Souza, M. C. B. V.; da C. Santos, F.; Moura, L. A.; Domingos, T. S.; Carvalho, C. Sanchez, E. F.; Fuly, A. L.; Cunha, A. C. Bioorg. Med. Chem. 2009, 17, 7429.  doi: 10.1016/j.bmc.2009.09.031

    58. [58]

      Wang, Z.; Bi, X.; Liao, P.; Zhang, R.; Liang, Y.; Dong, D. Chem. Commun. 2012, 48, 7076.  doi: 10.1039/c2cc33157h

    59. [59]

      Deng, G.; Wang, F.; Lu, S.; Cheng, B. Org. Lett. 2015, 17, 4651.  doi: 10.1021/acs.orglett.5b02369

    60. [60]

      Zhou, L.; Liu, Z.; Liu, Y.; Zhang, Y.; Wang, J. Tetrahedron 2013, 69, 6083.  doi: 10.1016/j.tet.2013.05.070

    61. [61]

      González, A.; Pérez, D.; Puig, C.; Ryder, H.; Sanahuja, J.; Solé, L.; Bach, J. Tetrahedron Lett. 2009, 50, 2750.  doi: 10.1016/j.tetlet.2009.03.118

    62. [62]

      Hasegawa, K.; Kimura, N.; Arai, S.; Nishida, A. J. Org. Chem. 2008, 73, 6363.  doi: 10.1021/jo8010864

    63. [63]

      Barluenga, J.; Lonzi, G.; Riesgo, L.; Tomás, M.; López, L. A. J. Am. Chem. Soc. 2011, 133, 18138.  doi: 10.1021/ja208965b

    64. [64]

      Qiu, L.; Huang, D.; Xu, G.; Dai, Z.; Sun, J. Org. Lett. 2015, 17, 1810.  doi: 10.1021/acs.orglett.5b00674

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(0)
  • Abstract views(3285)
  • HTML views(478)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return