Citation: Zhang Jiayu, Zhou Xiaoyu, Zhou Man, Jia Hongxia. Detection of Telomerase Activity Based on Signal Amplification of Hybridization Chain Reaction Combining with Magnetic Separation[J]. Acta Chimica Sinica, ;2016, 74(6): 513-517. doi: 10.6023/A16030136 shu

Detection of Telomerase Activity Based on Signal Amplification of Hybridization Chain Reaction Combining with Magnetic Separation

  • Corresponding author: Jia Hongxia, jia123renren@126.com
  • Received Date: 18 March 2016

    Fund Project: the Specialized Research Fund for the Doctoral Program of Higher Education of China 20121301120006the National Natural Science Foundation of China 21405032

Figures(5)

  • Telomerase is a ribonucleoprotein complex that is usually activated in the cancer cells and is closely related to telomere maintenance and immortalization of cancer cells. Telomerase activity detection is important for early diagnosis of human cancers as well as the screening of telomerase-target anti-cancer drugs. A new simple and fast method to detect the telomerase activity has been developed based on hybridization chain reaction (HCR) and magnetic separation. In the assay of experiment, the biotin-labeled telomerase substrate is elongated by telomerase generating a special DNA with repeated sequences-(ggttag)n at their terminals. These telomerase elongated products are fixedly connected with streptavidin-coated magnetic beads through the specific combination of streptavidin with biotin. At the same time, other cell extracts are removed by magnetic separation. A specific DNA probe I is designed as the initiator of HCR. 3'-Terminus of DNA probe I is complementary with three repeated sequences of telomerase elongated product. So, DNA probe I could be fixed on magnetic bead through hybridization. 5'-Terminus of DNA probe I is in charge of triggering HCR with DNA probe II and probe III. DNA probe II and probe III are modified with fluorophores. So, the HCR amplification results can be easily detected by fluorescence. All of excessive DNA probes can be removed by magnetic separation. Under the optimal conditions, telomerase activity in 1.0×105 Hela cells has been obviously detected. Because no enzyme involves in the signal amplification process of HCR, our proposed method can effectively avoid the interference of nonspecific amplification which usually exists in the polymerase amplification processes and increase the accuracy of the test results. Furthermore, enzyme-free signal amplification can effectively avoid the potential interference of telomerase inhibitor to the enzyme activity and improve the reliability of screening of telomerase inhibitors.
  • 加载中
    1. [1]

      Cohen, S. B.; Graham, M. E.; Lovrecz, G. O.; Bache, N.; Robinson, P. J.; Reddel, R. R. Science 2007, 315, 1850.  doi: 10.1126/science.1138596

    2. [2]

      Feng, J. L.; Funk, W. D.; Wang, S. S.; Weinrich, S. L.; Avilion, A. A.; Chiu, C. P.; Adams, R. R.; Chang, E.; Allsopp, R. C.; Yu, J. H.; Le, S. Y.; West, M. D.; Harley, C. B.; Andrews, W. H.; Greider, C. W.; Villeponteau, B. Science 1995, 269, 1236.  doi: 10.1126/science.7544491

    3. [3]

      Liu, Y.; Chen, X. M.; Zhang, L. Q.; Sun, D. D.; Zhou, Y. H.; Chen, L. M.; Liu, J. Acta Chim. Sinica 2014, 72, 473.  doi: 10.6023/A13101092
       

    4. [4]

      Kim, N. W.; Piatyszek, M. A.; Prowse, K. R.; Harley, C. B.; West, M. D.; Ho, W. P. L. C.; Coviello, G. M.; Wright, W. E.; Weinrich, S. L.; Shay, J. W. Science 1994, 266, 2011.  doi: 10.1126/science.7605428

    5. [5]

      Kim, N. W.; Wu, F. Nucleic Acids Res. 1997, 25, 2595.  doi: 10.1093/nar/25.13.2595

    6. [6]

      Szatmari, I.; Tőkés, S.; Dunn, C. B.; Bardos, T. J.; Aradi, J. Anal. Biochem. 2000, 282, 80.  doi: 10.1006/abio.2000.4589

    7. [7]

      Szatmari, I.; Aradi, J. Nucleic Acids Res. 2001, 29, e3.  doi: 10.1093/nar/29.2.e3

    8. [8]

      Wege, H.; Chui, M. S.; Le, H. T.; Tran, J. M.; Zern, M. A. Nucleic Acids Res. 2003, 31, e3.

    9. [9]

      Xiao, Y.; Dane, K. Y.; Uzawa, T.; Csordas, A.; Qian, J. R.; Soh, H. T.; Daugherty, P. S.; Lagally, E. T.; Heeger, A. J.; Plaxco, K. W. J. Am. Chem. Soc. 2010, 132, 15399.  doi: 10.1021/ja107085n

    10. [10]

      Huang, Y. P.; Kong, D. M.; Zhang, X. B.; Shen, H. X.; Mi, H. F. Acta Chim. Sinica 2004, 62, 274.
       

    11. [11]

      Van Ness, J.; Van Ness, L. K.; Galas, D. J. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4504.  doi: 10.1073/pnas.0730811100

    12. [12]

      Zhang, Y.; Wang, L. J.; Zhang, C. Y. Chem. Commun. 2014, 50, 1909.  doi: 10.1039/c3cc48518h

    13. [13]

      Tian, L. L.; Weizmann, Y. J. Am. Chem. Soc. 2013, 135, 1661.  doi: 10.1021/ja309198j

    14. [14]

      Ding, C. F.; Li, X. L.; Ge, Y.; Zhang, S. S. Anal. Chem. 2010, 82, 2850.  doi: 10.1021/ac902818w

    15. [15]

      Zhao, Y. X.; Qi, L.; Chen, F.; Zhao, Y.; Fan, C. H. Biosens. Bioelectron. 2013, 41, 764.  doi: 10.1016/j.bios.2012.10.009

    16. [16]

      Dirks, R. M.; Pierce, N. A. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 15275.  doi: 10.1073/pnas.0407024101

    17. [17]

      Niu, S. Y.; Jiang, Y.; Zhang, S. S. Chem. Commun. 2010, 46, 3089.  doi: 10.1039/c000166j

    18. [18]

      Chen, Y.; Xu, J.; Su, J.; Xiang, Y.; Yuan, R.; Chai, Y. Q. Anal. Chem. 2012, 84, 7750.  doi: 10.1021/ac3012285

    19. [19]

      Ge, Z. L.; Lin, M. H.; Wang, P.; Pei, H.; Yan, J.; Shi, J. Y.; Huang, Q.; He, D. N.; Fan, C. H.; Zuo, X. L. Anal. Chem. 2014, 86, 2124.  doi: 10.1021/ac4037262

    20. [20]

      Yang, L.; Liu, C. H.; Ren, W.; Li, Z. P. ACS Appl. Mater. Interfaces 2012, 4, 6450.  doi: 10.1021/am302268t

    21. [21]

      Zhang, B.; Liu, B. Q.; Tang, D. P.; Niessner, R.; Chen, G. N.; Knopp, D. Anal. Chem. 2012, 84, 5392.  doi: 10.1021/ac3009065

    22. [22]

      Wang, W. J.; Li, J. J.; Rui, K.; Gai, P. P.; Zhang, J. R.; Zhu, J. J. Anal. Chem. 2015, 87, 3019.  doi: 10.1021/ac504652e

    23. [23]

      Eskiocak, U.; Ozkan-Ariksoysal, D.; Ozsoz, M.; Öktem, H. A. Anal. Chem. 2007, 79, 8807.  doi: 10.1021/ac071014r

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(0)
  • Abstract views(2498)
  • HTML views(584)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return