Citation: Yuan Pei, Chen Jian, Pan Deng, Bao Xiaojun. Adsorption and Reaction Kinetic Studies of the Heterogeneous Catalytic Hydrogenation for Polystyrene[J]. Acta Chimica Sinica, ;2016, 74(7): 603-611. doi: 10.6023/A16030117 shu

Adsorption and Reaction Kinetic Studies of the Heterogeneous Catalytic Hydrogenation for Polystyrene

  • Corresponding author: Yuan Pei, yuanpei@cup.edu.cn
  • Received Date: 4 March 2016

    Fund Project: China National Petroleum Corp. 2012B-2805The National Natural Science Foundation of China 21106182The National Natural Science Foundation of China 21576290

Figures(10)

  • We applied silica hollow microspheres with through holes in the shell as supports to prepare Pd-based supported catalyst (Pd/SHMs) for heterogeneous catalytic hydrogenation of polystyrene (PS) and also systematically studied the adsorption and reaction behavior of PS molecules over Pd/SHMs. The dynamic adsorption and reaction models of PS molecules under different temperatures have been established and the partially hydrogenated products were also comprehensively analyzed. The result shows that both the adsorption capacity and saturation time are increased as the temperature increasing and this hydrogenation reaction is confirmed to be a first-order reaction and the activation energy is calculated to be 58.3 kJ·mol-1. After separating and purifying three samples with different hydrogenation degrees, we further analyzed the partially hydrogenated products and the results show that they are all actually comprised of two kinds of substances with different properties, one with high hydrogenation conversion rate (ca. 85%) and the other with low hydrogenation ratio (ca. 25%). It is proved that PS heterogeneous hydrogenation process exists secondary adsorption and competitive adsorption phenomenon, and obeys the Blocky mechanism. This work lays the foundation for PS adsorption and hydrogenation reaction and is also favorable for the understanding of the adsorption and catalytic process for other unsaturated polymers over heterogeneous catalysts.
  • 加载中
    1. [1]

      Singha, N. K.; Bhattacharjee, S.; Sivaram, S. Rubber Chem. Technol. 1997, 70, 311.

    2. [2]

      Xu, Z. D.; Hadjichristidis, N.; Carella, J. M.; Fetters, L. J. Macromolecules 1983, 16, 925.  doi: 10.1021/ma00240a019

    3. [3]

      Dondos, A.; Staikos, G. Colloid Polym. Sci. 1995, 273, 626.  doi: 10.1007/BF00652254

    4. [4]

      Garcia Escribiano, P.; Canovas, M. J.; Ojeda, M. C.; Del Rio, C.; Sanchez, F.; Acosta, J. L. Polym. Int. 2011, 60, 493.  doi: 10.1002/pi.v60.3

    5. [5]

      Wei, Z. L.; Wu, J. L.; Pan, Q. M.; Rempel, G. L. Macromol. Rapid Commun. 2005, 26, 1768.  doi: 10.1002/(ISSN)1521-3927

    6. [6]

      Monroy-Barreto, M.; Acosta, J. L.; Del Rio, C.; Ojeda, M. C.; Munoz, M.; Aguilar, J. C. J. Power Sources 2010, 195, 8052.  doi: 10.1016/j.jpowsour.2010.06.105

    7. [7]

      Jin, M.; Liao, M.; Zhai, J.; Jiang, L. Acta Chim. Sinica 2008, 66, 145.
       

    8. [8]

      Xu, L.; Li, W.; Yang, M. Acta Chim. Sinica 2007, 65, 1917.
       

    9. [9]

      Zhang, S.; Bai, Y.; Peng, J.; Hu, Y.; Lai, G. Prog. Chem. 2013, 25, 707.

    10. [10]

      Przybyszewska, M.; Zaborski, M. Composite Interfaces 2009, 16, 131.  doi: 10.1163/156855409X402920

    11. [11]

      Yoon, K.; Kim, K. O.; Schaefer, M.; Yoon, D. Y. Polymer 2012, 53, 2290.  doi: 10.1016/j.polymer.2012.02.047

    12. [12]

      Choi, M.; Kim, Y.; Ha, C. Prog. Polym. Sci. 2008, 33, 581.  doi: 10.1016/j.progpolymsci.2007.11.004

    13. [13]

      Gehlsen, M. D.; Bates, F. S. Macromolecules 1993, 26, 4122.  doi: 10.1021/ma00068a009

    14. [14]

      Huang, H.; Fan, Y.; Tao, S.; Gao, H. New Chem. Mater. 2013, 41, 178.

    15. [15]

      Ness, J. S.; Brodil, J. C.; Bates, F. S.; Hahn, S. F.; Hucul, D. A.; Hillmyer, M. A. Macromolecules 2001, 35, 602.

    16. [16]

      Dong, L. B.; Turgman-Cohen, S.; Roberts, G. W.; Kiserow, D. J. Ind. Eng. Chem. Res. 2010, 49, 11280.  doi: 10.1021/ie1011905

    17. [17]

      Xu, D.; Carbonell, R. G.; Kiserow, D. J.; Roberts, G. W. Ind. Eng. Chem. Res. 2003, 42, 3509.  doi: 10.1021/ie0301841

    18. [18]

      Hucul, D. A.; Hahn, S. F. Adv. Mater. 2000, 12, 1855.  doi: 10.1002/(ISSN)1521-4095

    19. [19]

      Aylward, F.; Sawistowka, M.; Arthur, F.; Robert, C. B.; Shirley, H. Chem. Rev. 1965, 65, 51.  doi: 10.1021/cr60233a002

    20. [20]

      Parent, J. S.; Mcmanus, N. T.; Rempel, G. L. Ind. Eng. Chem. Res. 1996, 35, 4417.  doi: 10.1021/ie9506680

    21. [21]

      Martin, P.; Mcmanus, N. T.; Rempel, G. L. J. Mol. Catal. A: Chem. 1997, 126, 115.  doi: 10.1016/S1381-1169(97)00102-7

    22. [22]

      Bhattacharjee, S.; Bhowmick, A. K.; Avasthi, B. N. J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 471.  doi: 10.1002/pola.1992.080300314

    23. [23]

      Bond, G. C. Heterogeneous Catalysis: Principles and Applications, 2nd Ed., Clarendon Press, Oxford, 1987, p. 120.

    24. [24]

      Bussard, A.; Dooley, K. M. AIChE J. 2008, 54, 1064.  doi: 10.1002/(ISSN)1547-5905

    25. [25]

      Zhou, H.; Qiang, M.; Li, J.; Li, Y.; Wang, J. Polym. Mater. Sci. Eng. 2011, 27, 73.

    26. [26]

      Almusaiteer, K. A. Top. Catal. 2012, 55, 498.  doi: 10.1007/s11244-012-9821-3

    27. [27]

      Hutchings, G. J. J. Mater. Chem. 2009, 19, 1222.  doi: 10.1039/B812300B

    28. [28]

      Fang, F.; Satulovsky, J.; Szleifer, I. Biophys. J. 2005, 89, 1516.  doi: 10.1529/biophysj.104.055079

    29. [29]

      Rosedale, J. H.; Bates, F. S. J. Am. Chem. Soc. 1988, 110, 3542.  doi: 10.1021/ja00219a032

    30. [30]

      Huang, H.; Zhou, J.; Ying, Q.; Tao, S. Mod. Chem. Ind. 2014, 34, 70.

    31. [31]

      Cassano, G. A.; Vallés, E. M.; Quinzani, L. M. Polymer 1998, 39, 5573.  doi: 10.1016/S0032-3861(97)10080-5

    32. [32]

      Tsukagoshi, T.; Kondo, Y.; Yoshino, N. Colloids Surf. B-Biointerfaces 2007, 54, 101.  doi: 10.1016/j.colsurfb.2006.10.004

    33. [33]

      Linse, P.; Kallrot, N. Macromolecules 2010, 43, 2054.  doi: 10.1021/ma902338m

    34. [34]

      Kawaguchi, M.; Anada, S.; Nishikawa, K.; Kurata, N. Macromolecules 1992, 25, 1588.  doi: 10.1021/ma00031a035

    35. [35]

      Kawaguchi, M.; Sakata, Y.; Anada, S.; Kato, T.; Takahashi, A. Langmuir 1994, 10, 538.  doi: 10.1021/la00014a033

    36. [36]

      Rybicka, J.; Sikorski, A. Macromol. Theory Simul. 2010, 19, 135.

    37. [37]

      Scheutjens, J. M. H. M.; Fleer, G. J. J. Phys. Chem. 1979, 83, 1619.  doi: 10.1021/j100475a012

    38. [38]

      Scheutjens, J. M. H. M.; Fleer, G. J. J. Phys. Chem. 1980, 84, 178.  doi: 10.1021/j100439a011

    39. [39]

      Doi, Y.; Yano, A.; Soga, K.; Burfield, D. R. Macromolecules 1986, 19, 2409.  doi: 10.1021/ma00163a013

    40. [40]

      Tangthongkul, R.; Prasassarakich, P.; Mcmanus, N. T.; Rempel, G. L. J. Appl. Polym. Sci. 2004, 91, 3259.  doi: 10.1002/(ISSN)1097-4628

    41. [41]

      Hinchiranan, N.; Charmondusit, K.; Prasassarakich, P.; Rempel, G. L. J. Appl. Polym. Sci. 2006, 100, 4219.  doi: 10.1002/(ISSN)1097-4628

    42. [42]

      Pan, D.; Shi, G.; Zhang, T.; Yuan, P.; Fan, Y.; Bao, X. J. Mater. Chem. A 2013, 1, 9597.  doi: 10.1039/c3ta11824j

    43. [43]

      Dijt, J. C.; Cohen Stuart, M. A.; Fleer, G. J. Macromolecules 1994, 27, 3207.  doi: 10.1021/ma00090a014

    44. [44]

      Kislenko, V. N.; Berlin, A. A.; Kawaguchi, M.; Kato, T. Langmuir 1996, 12, 768.  doi: 10.1021/la950478u

    45. [45]

      Tóth, J. Adsorption: Theory, Modeling, and Analysis, Marcel Dekker, New York, 2002, p. 26.

    46. [46]

      Whittier, R. E. MS Thesis, North Carolina State University, Raleigh, 2004.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    17. [17]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    20. [20]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

Metrics
  • PDF Downloads(0)
  • Abstract views(1405)
  • HTML views(277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return