Citation: Li Xiulin, Wang Yang, Zhai Jin. A Bio-inspired Nanochannel with Au Nanoparticles[J]. Acta Chimica Sinica, ;2016, 74(7): 597-602. doi: 10.6023/A16020098 shu

A Bio-inspired Nanochannel with Au Nanoparticles

  • Corresponding author: Zhai Jin, zhaijin@buaa.edu.cn
  • Received Date: 24 February 2016

    Fund Project: the National Natural Science Foundation of China 21271016

Figures(9)

  • Ion channels that exist in the living systems play important roles in maintaining normal physiological processes, and they have attracted great attentions of scientists because of their unique property in many biological activities. Learning from nature become an important source of new materials development. Inspired by natural biological ion channels, artificial polyethylene terephthalate (PET) nanochannel was built by track-etched method and served as one kind of the biomimetic ion channels in this paper. By introducing the idea of asymmetric modification in the PET cylindrical nanochannels, we designed and fabricated an artificial nanochannel system with high and controllable rectification, which ion transport properties can be regulated by Au nanoparticles. PET cylindrical nanochannels are modified with 2-undecyl-1-disulfide ureidoethyl quaternary imidazolinium salt (SUDEI) by electrostatic adsorption, resulting in positively charged on one side of PET cylindrical nanochannels. Since the other side of nanochannels are negatively charged, this membrane exhibits rectified properties with asymmetric charge distribution and geometric structure. The movement of cation presents a priority direction, which is from SUDEI side to the other side, and the opposite direction is suppressed. The ion transportation properties of the nanochannels can be investigated by measuring the current-voltage characteristics, and the diode-like behavior is quantified by the current rectification ratios. By introducing the SUDEI, PET nanochannels have a non-linear ion transport properties, showing better gating performance. In addition, the rectification ratios of this system can be regulated by SUDEI modification time and Au nanoparticles. SUDEI contains active sulfur element, resulting in Au nanoparticles stably bounding to SUDEI with Au—S bond. Therefore, the addition of Au nanoparticles can further increase the nanogating ratio because it can reduce the effective diameter of the cylindrical nanochannels, making the system more asymmetrical. And the ion transport in this system exhibits excellent stability. This system provides a new design idea for further research on more complicated functionalization and smart nanochannel systems.
  • 加载中
    1. [1]

      Rothman, J. E.; Lenard, J. Science 1977, 195, 743.  doi: 10.1126/science.402030

    2. [2]

      Hou, X.; Guo, W.; Jiang, L. Chem. Soc. Rev. 2011, 40, 2385.  doi: 10.1039/c0cs00053a

    3. [3]

      Tang, C.; Wang, L.; Yun, Y.; Zhang, C.; Liu, B. Acta Chim. Sinica 2011, 69, 343 (in Chinese).
       

    4. [4]

      Zhang, L.-X.; Cai, S.-L.; Zheng, Y.-B.; Cao, X.-H.; Li, Y.-Q. Adv. Funct. Mater. 2011, 21, 2103.  doi: 10.1002/adfm.v21.11

    5. [5]

      Meer, G.; Voelker, D. R.; Feigenson, G. W. Nat. Rev. Mol. Cell Bio. 2008, 9, 112.  doi: 10.1038/nrm2330

    6. [6]

      Gouaux, E.; MacKinnon, R. Science 2005, 310, 1461.  doi: 10.1126/science.1113666

    7. [7]

      Eisenman, G.; Horn, R. J. Membrane Biol. 1983, 76, 197.  doi: 10.1007/BF01870364

    8. [8]

      Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Adv. Mater 2002, 14, 1857.  doi: 10.1002/adma.200290020

    9. [9]

      Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.  doi: 10.1002/smll.v6:3

    10. [10]

      Che, Y. P.; Zhai, J. Sci. Sin. Chim. 2015, 45, 262 (in Chinese).  doi: 10.1360/N032014-00258

    11. [11]

      Nasir, S.; Ali, M.; Ensinger, W. Nanotechnology 2012, 23, 225502.  doi: 10.1088/0957-4484/23/22/225502

    12. [12]

      Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Small 2009, 5, 1287.  doi: 10.1002/smll.v5:11

    13. [13]

      Alcaraz, A.; Ramirez, P.; Garcia-Gimenez, E.; López, M. L.; Andrio, A.; Aguilella, V. M. J. Phys. Chem. B 2006, 110, 21205.  doi: 10.1021/jp063204w

    14. [14]

      Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Nano Lett. 2009, 9, 2788.  doi: 10.1021/nl901403u

    15. [15]

      Ali, M.; Ramirez, P.; Mafe, S.; Neumann, R.; Ensinger, W. ACS Nano 2009, 3, 603.  doi: 10.1021/nn900039f

    16. [16]

      Zhang, M. H.; Hou, X.; Wang, J.; Tian, Y.; Xia, F.; Zhai, J.; Jiang, L. Adv. Mater. 2012, 24, 2424.  doi: 10.1002/adma.201104536

    17. [17]

      Ali, M.; Nasir, S.; Ramirez, P.; Ahmed, I.; Nguyen, Q. H.; Fruk, L.; Mafe, S.; Ensinger W. Adv. Funct. Mater. 2012, 22, 390.  doi: 10.1002/adfm.201102146

    18. [18]

      Zhang, Q.; Liu, Z.; Hou, X.; Fan, X.; Zhai, J.; Jiang, L. Chem. Commun. 2012, 48, 5901.  doi: 10.1039/c2cc32451b

    19. [19]

      Meng, Z. Y.; Jiang, C.; Li, X.; Zhai, J. ACS Appl. Mater. Interfaces 2014, 6, 3794.  doi: 10.1021/am5002822

    20. [20]

      Hou, X.; Guo, W.; Xia, F.; Nie, F. Q.; Dong, H.; Tian, Y.; Wen, L.; Wang, L.; Cao, L.; Yang, Y.; Xue, J.; Song, Y.; Wang, Y.; Liu, D.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 7800.  doi: 10.1021/ja901574c

    21. [21]

      Han, C.; Su, H.; Sun, Z.; Wen, L.; Tian, D.; Xu, K.; Hu, J.; Wang, A.; Li, H.; Jiang, L. Chem. Eur. J. 2013, 19, 9388.  doi: 10.1002/chem.v19.28

    22. [22]

      Xu, Y.; Sui, X.; Guan, S.; Zhai, J.; Gao, L. Adv. Mater. 2015, 27, 1851.  doi: 10.1002/adma.v27.11

    23. [23]

      Xu, Y.; Zhang, M.; Tian, T.; Shang, Y.; Meng, Z.; Jiang, J.; Zhai, J.; Wang, Y. NPG Asia Mater. 2015, 7, 1.

    24. [24]

      Guo, W.; Jiang, L. Sci. Sin. Chim. 2011, 41, 1257 (in Chinese).郭维, 江雷, 中国科学:化学, 2011, 41, 1257.  doi: 10.1360/032011-186

    25. [25]

      Siwy, Z. S. Adv. Funct. Mater. 2006, 16, 735.  doi: 10.1002/(ISSN)1616-3028

    26. [26]

      Gao, L.; Li, P.; Zhang, Y.; Xiao, K.; Ma, J.; Xie, G.; Hou, G.; Zhang, Z.; Wen, L.; Jiang, L. Small 2014, 11, 543.

    27. [27]

      Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L. J. Am. Chem. Soc. 2014, 136, 12265.  doi: 10.1021/ja503692z

    28. [28]

      Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L. Adv. Mater. 2010, 22, 2440.  doi: 10.1002/adma.v22:22

    29. [29]

      Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.  doi: 10.1002/smll.v6:3

    30. [30]

      Chakarvarti, S. K. Radiat. Meas. 2009, 44, 1085.  doi: 10.1016/j.radmeas.2009.10.028

    31. [31]

      Apel, P. Radiat. Meas. 2001, 34, 559.  doi: 10.1016/S1350-4487(01)00228-1

    32. [32]

      Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R. J. Am. Chem. Soc. 2004, 126, 10850.  doi: 10.1021/ja047675c

    33. [33]

      Tahir, M. N.; Ali, M.; Andre, R.; Müller, W. E. G.; Schröder, H.-C.; Tremel, W.; Ensinger, W. Chem. Commun. (Camb). 2013, 49, 2210.  doi: 10.1039/c3cc38605h

    34. [34]

      Kalman, E. B.; Vlassiouk, I.; Siwy, Z. S. Adv. Mater. 2008, 20, 293.  doi: 10.1002/(ISSN)1521-4095

  • 加载中
    1. [1]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    12. [12]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    19. [19]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    20. [20]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

Metrics
  • PDF Downloads(0)
  • Abstract views(740)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return