Citation: Zhang Shaofei, Yang Jiandong, Liu Mingzhu, Lü Shaoyu, Gao Chunmei, Wu Can, Zhu Zhaoyan. Synthesis of Peptide Dendrimers and Their Application in the Drug Delivery System[J]. Acta Chimica Sinica, ;2016, 74(5): 401-409. doi: 10.6023/A16020096 shu

Synthesis of Peptide Dendrimers and Their Application in the Drug Delivery System

  • Corresponding author: Liu Mingzhu, 
  • Received Date: 22 February 2016

    Fund Project: the National Natural Science Foundation of China 51541304the National Natural Science Foundation of China 51273086Key Research Project of Longnan Teacher's College 2014LSZK01004Special Doctorial Program Fund from the Ministry of Education of China 20130211110017

Figures(12)

  • Dendrimers are a novel polymer material, which have received more and more attention due to the functional groups on their surface, hydrophobic cavity and adjustable sizes. Thus, dendrimers have been widely used in many fields. Peptide dendrimer is a sort of dendritic polymer, which contains peptide bonds in the structure. Owing to the globular structure similar to the protein, excellent water solubility, biocompatibility, biodegradability and low toxicity, peptide dendrimer could be used as drug delivery carrier. In addition, hydrophobic cavity can be used to solubilize hydrophobic drugs, in which the drugs can be released slowly. The present review highlights the current status of synthesis of peptide dendrimers, and it also summarizes and forecasts the interaction mechanism between drug molecules and peptide dendrimers, and the application of peptide dendrimers in drug delivery system.
  • 加载中
    1. [1]

      Tomalia, D.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117.  doi: 10.1295/polymj.17.117

    2. [2]

      Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem. 1985, 50, 2003.  doi: 10.1021/jo00211a052

    3. [3]

      Tian, W.; Ma, Y. Chem. Soc. Rev. 2013, 42, 707.

    4. [4]

      Nanjwade, B. K.; Bechra, H. M.; Derkar, G. K.; Manvi, F. V.; Nanjwade, V. K. Eur. J. Pharm. Sci. 2009, 38, 189.

    5. [5]

      Surendra, T.; Malay, K. D. J. Appl. Pharm. Sci. 2013, 3, 143.

    6. [6]

      Klajnert, B.; Bryszewskar, M. Acta Biochim. Pol. 2001, 48, 203.

    7. [7]

      Prashant, K.; Keerti, J.; Narendra, K. J. Prog. Polym. Sci. 2014, 39, 276.

    8. [8]

      Li, J.; Zeng, Y.; Zhang, X.; Yu, T.; Chen, J.; Li, Y. Acta Chim. Sinica 2014, 72, 1158.
       

    9. [9]

      Li, J.; Zeng, Y.; Zhang, X.; Yu, T.; Chen, J.; Li, Y. Acta Chim. Sinica 2015, 73, 827.
       

    10. [10]

      Elizabeth, R.; Gillies, J.; Fréchet, M. J. Drug Discov. Today 2005, 10, 38.

    11. [11]

      Marie, V.; Walter; Michael, M. Chem. Soc. Rev. 2012, 41, 4593.  doi: 10.1039/c2cs35062a

    12. [12]

      Elham, A.; Sedigheh, F. A.; Abolfazl, A.; Morteza, M.; Hamid, T. N.; Sang, W. J.; Younes, H.; Kazem, N.-K.; Roghiyeh, P.-A. Nanoscale Res. Lett. 2014, 9, 248.  doi: 10.1186/1556-276X-9-248

    13. [13]

      Laia, C.; Glòria, S.; Miquel, P.; Ernest, G.; Miriam, R.; Fernando, A. Chem. Rev. 2005, 105, 1670.

    14. [14]

      She, W. C.; Xu, X. H.; Wang, G.; Luo, K.; Gu, Z. W. Mater. China 2012, 31, 21.

    15. [15]

      Gu, Z. W.; Luo, K.; She, W. C.; Wu, Y.; He, B. Scientia Sinica Chimica 2010, 40, 210.

    16. [16]

      Xu, X.; Yuan, H.; Chang, J.; He, B.; Gu, Z. Angew. Chem. Int. Ed. 2012, 124, 3185.

    17. [17]

      Wang, F.; Xu, L.; Chu, G.; Shi, J.; Guo, Q. Chin. J. Org. Chem. 2016, 36, 218.  doi: 10.6023/cjoc201505014

    18. [18]

      Merrifield, R. B. J. Am. Chem. Soc. 1964, 3, 1385.

    19. [19]

      Daniel, K. S.; Sahar, M.; Ulrik, B. Tetrahedron Lett. 2014, 55, 3942.  doi: 10.1016/j.tetlet.2014.04.127

    20. [20]

      Laia, C.; Glòria, S.; Beatriz, M.; Ricardo, P. T.; Miriam, R.; Miquel, P.; Fernando, A.; Ernest, G. J. Am. Chem. Soc. 2002, 124, 8878.

    21. [21]

      Kitamatsu, M.; Kitabatake, M.; Noutoshi, Y.; Ohtsuki, T. Biopolymers 2013, 100, 65.

    22. [22]

      Lin, X. F.; Wang, Y. G. J. Org. Chem. 2005, 25, 1157.

    23. [23]

      Denkewalter, R. G.; Kole, J.; Lukasavage, W. J. US 4289872, 1981 [Chem. Abstr. 1981, 102, 79324].

    24. [24]

      Feng, Y.; He, Y. M.; Zhao, L. W.; Huang, Y. Y.; Fan, Q. H. Org. Lett. 2007, 9, 2261.  doi: 10.1021/ol0705393

    25. [25]

      Joon, S. C.; Dong, K. J.; Chang, H. K.; Kwan, K.; Jong, S. P. J. Am. Chem. Soc. 2000, 122, 475.

    26. [26]

      Hu, J.; He, J.; Zhang, M.; Ni, P. Acta Polymerica Sinica 2013, (3), 300.

    27. [27]

      John, E. M.; Adam, D. M. Chem. Soc. Rev. 2007, 36, 1250.

    28. [28]

      Mehmet, A. T.; Baris, K.; Yusuf, Y. Prog. Polym. Sci. 2016, 52, 19.  doi: 10.1016/j.progpolymsci.2015.09.003

    29. [29]

      Dirk, T. S. R.; Wilma, E. G.; Remco, M.; Arwin, J. B.; Hans, J. F. J.; Roland, J. P.; Rob, M. J. L. Chem. Commun. 2005, 36, 4582.

    30. [30]

      Yim, C. B.; Boerman, O. C.; Visser, M.; Jong, M.; Dechesne, A. C.; Rijkers, D. T. S.; Liskamp, R. M. J. Bioconjugate Chem. 2009, 20, 1323.  doi: 10.1021/bc900052n

    31. [31]

      Pu, Y. J.; Yuan, H.; Yang, M.; He, B.; Gu, Z. W. Chin. Chem. Lett. 2013, 24, 917.  doi: 10.1016/j.cclet.2013.06.015

    32. [32]

      Li, N.; Li, N.; Yi, Q.; Luo, K.; Guo, C.; Pan, D.; Gu, Z. Biomaterials 2014, 35, 9533.

    33. [33]

      Pan, D.; She, W.; Guo, C.; Luo, K.; Yi, Q.; Gu, Z. Biomaterials 2014, 35, 10081.

    34. [34]

      Zhang, C.; Pan, D.; Luo, K.; Li, N.; Guo, C.; Zheng, X.; Gu, Z. 2014, 5, 5228.

    35. [35]

      Reddy, N.; Reddy, R.; Jiang, Q. Trends Biotechnol. 2015, 33, 362.  doi: 10.1016/j.tibtech.2015.03.008

    36. [36]

      Domeradzka, N.; Werten, M.; Wolf, F.; Vries, R. Curr. Opin. Biotechnol. 2016, 39, 61.

    37. [37]

      Li, C. Y.; Wang, H. J.; Cao, J. M.; Zhang, J.; Yu, X. Q. Eur. J. Med. Chem. 2014, 87, 414.

    38. [38]

      Buhleier, E.; Wehner, W.; Vögtle, F. Synthesis 1978, 2, 155.

    39. [39]

      Lin, Y.; Weng, L.; Qi, Q. The Scientific World J. 2015, 2015, 5.

    40. [40]

      Hawker, C. J.; Frechet, J. M. J. Am. Chem. Soc. 1990, 112, 7638.  doi: 10.1021/ja00177a027

    41. [41]

      Scott, M. G.; Jean, M. J. F. Chem. Rev. 2001, 101, 3819.  doi: 10.1021/cr990116h

    42. [42]

      Zhu, R.; Jiang, W.; Pu, Y.; Luo, K.; Wu, Y.; He, B.; Gu, Z. J. Mater. Chem. 2011, 21, 5466.

    43. [43]

      Pierre, M.; Gilles, Q.; Ling, P. Tetrahedron Lett. 2015, 56, 4043.  doi: 10.1016/j.tetlet.2015.05.036

    44. [44]

      Olga, F.; Alexander, G.; Vladimir, R. J. Am. Chem. Soc. 2003, 125, 4885.

    45. [45]

      Dykes, M. G.; Brierley, J. L.; Smith, K. D.; McGrail, P. T.; Seeley, G. J. Chem. Eur. J, 2001, 7, 4731.

    46. [46]

      Al-Jamal, K. T.; Al-Jamal, W.; Wang, J. T.; Rubio, N.; Buddle, J.; Gathercole, D.; Zloh, M.; Kostarelos, K. ACS Nano 2013, 7, 1905.  doi: 10.1021/nn305860k

    47. [47]

      Li, Y.; Han, S.; Toshiyuki, U. Sen-i Gakkaishi 2015, 71, 13.

    48. [48]

      Yuan, H.; Luo, K.; Lai, Y.; Pu, Y.; He, B.; Wang, G.; Wu, Y.; Gu, Z. Mol. Pharm. 2010, 7, 957.

    49. [49]

      Pu, Y.; Chang, S.; Yuan, H.; Wang, G.; He, B.; Gu, Z. Biomaterials 2013, 34, 3659.

    50. [50]

      Glòria, S.; Laia, C.; Ernest, G. M. R.; Fernando, A. Pept. Sci. 2004, 76, 284.

    51. [51]

      Torres, Á.; Albericio, F.; Royo, M. Eur. J. Org. Chem. 2013, 36, 8280.

    52. [52]

      Emanuele, A.; Attwood, D. Adv. Drug Delivery Rev. 2005, 57, 2147.  doi: 10.1016/j.addr.2005.09.012

    53. [53]

      He, X.; Alves, S. C.; Oliveira, N.; Rodrigues, J.; Zhu, J.; BÁnyai, I.; TomÁs, H.; Shi, X. Colloids Surf. B: Biointerfaces 2015, 125, 83.

    54. [54]

      Gillies, E.; Fréchet, J. Drug Discov. Today 2005, 10, 35.  doi: 10.1016/S1359-6446(04)03276-3

    55. [55]

      Boas, U.; Karlsson, A.; Waal, B. F. M.; Meijer, E. W. J. Org. Chem. 2001, 66, 2136.  doi: 10.1021/jo001573x

    56. [56]

      Aulenta, F.; Hayes, W. S. Eur. Polym. J. 2003, 39, 1741.  doi: 10.1016/S0014-3057(03)00100-9

    57. [57]

      Tyssen, D.; Henderson, S. A.; Johnson, A. PLoS One 2010, 5, 5.

    58. [58]

      Fox, M. E.; Guillaudeu, S.; Fréchet, J. M. J.; Jerger, K.; Macaraeg, N.; Szoka, F. C. Mol. Pharm. 2009, 6, 1563.

    59. [59]

      Craik, D. J.; Fairlie, D.; Liras, P. S.; Price, D. Chem. Biol. Drug Des. 2013, 81, 136.  doi: 10.1111/cbdd.2012.81.issue-1

    60. [60]

      Zhang, X.; Zhang, Z.; Xu, X.; Li, Y.; Li, Y.; Jian, Y.; Gu, Z. Angew. Chem. Int. Ed. 2015, 54, 4289.  doi: 10.1002/anie.201500683

    61. [61]

      Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Adv. Healthcare Mater. 2014, 3, 1299.  doi: 10.1002/adhm.v3.8

    62. [62]

      Kaminskas, L. M.; Kelly, B. D.; McLeod, V. M.; Sberna, G.; Owen, D. J.; Boyd, B. J.; Porter, C. J. H. J. Control. Release 2011, 152, 338.

    63. [63]

      Kaminskas, L. M.; Kelly, B. D.; McLeod, V. M.; Boyd, B. J.; Krippne, G. Y.; Williams, E. D.; Porter, C. J. H. Mol. Pharmaceutics 2009, 6, 1190.  doi: 10.1021/mp900049a

    64. [64]

      Kaminskas, L. M.; Kelly, B. D.; McLeod, V. M.; Sberna, G.; Boyd, B. J.; Owen, D. J.; Porter, C. J. H. Mol. Pharmaceutics 2011, 8, 338.  doi: 10.1021/mp1001872

    65. [65]

      Jain, K.; Gupta, U.; Jain, N. K. Eur. J. Pharm. Biopharm. 2014, 87, 503.

    66. [66]

      Bhadra, D.; Bhadra, S.; Jain, N. K. Pharm. Res. 2006, 23, 628.

    67. [67]

      Agrawal, P.; Gupta, U.; Jain, N. K. Biomaterials 2007, 28, 3349.  doi: 10.1016/j.biomaterials.2007.04.004

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(0)
  • Abstract views(2526)
  • HTML views(353)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return