Citation: Li Yanchun, Wang Hao, Dong Mei, Li Junfen, Wang Guofu, Qin Zhangfeng, Fan Weibin, Wang Jianguo. Optimization of Reaction Conditions in the Transalkylation of Toluene with 1, 2, 4-Trimethylbenzene Catalyzed by Beta Zeolite and the Investigation of Its Reaction Mechanism[J]. Acta Chimica Sinica, ;2016, 74(6): 529-537. doi: 10.6023/A16020077 shu

Optimization of Reaction Conditions in the Transalkylation of Toluene with 1, 2, 4-Trimethylbenzene Catalyzed by Beta Zeolite and the Investigation of Its Reaction Mechanism

  • Corresponding author: Wang Hao, wanghao@sxicc.ac.cn Fan Weibin, fanwb@sxicc.ac.cn
  • Received Date: 3 February 2016

    Fund Project: the National Natural Science Foundation of China 21273264the National Natural Science Foundation of China 21273263the Research Project Supported by Shanxi Scholarship Council of China 2014-102

Figures(9)

  • The effect of reaction conditions and acidic property of Beta zeolite on the transalkylation reaction between toluene and trimethylbenzene (TMB) was studied systematically. The results indicate that the activity and stability of catalysts are strongly dependent on the reaction conditions including reactant composition, reaction temperature and pressure, and crystal size as well as the acidic property of the zeolite. For TMB disproportionation reaction, the addition of toluene should be helpful to the increase of selectivity of xylene. In the meantime, for the disproportionation reaction of toluene, the mixing of TMB into feedstocks can also increase the xylene yield. Therefore, the higher yield of xylene is obtained at the equal molar ratio of toluene and TMB as feedstocks. The temperature of reaction plays an important role on the transalkylation of toluene with TMB. The catalytic activity of transalkylation increases gradually with the increasing of reaction temperature until 450 ℃, and then the dealkylation reaction and the formation of coke will be intensified with the further increasing of temperature, which leads to the decrease of catalytic stability. Therefore, the optimum temperature for transalkylation reaction is 450 ℃. The increasing of reaction pressure also has a positive effect on the catalytic activity of transalkylation. Thus, the transalkylation reaction is conducted at the pressure of 3 MPa taking into account the bearing capacity of reactor. The transalkylation catalytic activity is decreased with the increase of Si/Al ratio of Beta zeolite because of the reduction of the amount of acid sites that act as the active sites for transformation of alkylaromatics. The catalytic stability of zeolite could be significantly improved with the decrease of crystal size. In order to investigate the reaction mechanism of transalkylation, gas chromatography-mass spectrometry (GC-MS) technique is used to study the generation and decomposition of intermediate species over Beta zeolite during the transalkylation reaction at the lower experiment temperature of 150 ℃ because the intermediate species is instable at higher reaction temperature. The results indicate that the transalkylation of toluene with 1, 2, 4-TMB occurs via the bimolecular intermediate mechanism. As the bulky species, the formation and decomposition of these intermediate species require a large zeolite channel. Therefore, the Beta zeolite with 12 member-ring large pore shows higher catalytic activity for transalkylation reaction.
  • 加载中
    1. [1]

      Tsai, T.-C.; Liu, S.-B.; Wang, I. Appl. Catal. A 1999, 181, 355.  doi: 10.1016/S0926-860X(98)00396-2

    2. [2]

      Xu, O.; Su, H.; Ji, J.; Jin, X.; Chu, J. Chin. J. Chem. Eng. 2007, 15, 326.  doi: 10.1016/S1004-9541(07)60088-3

    3. [3]

      Tukur, N. M.; Al-Khattaf, S. Energy Fuels 2007, 21, 2499.  doi: 10.1021/ef7002602

    4. [4]

      Chen, Q. L.; Kong, D. J.; Yang, W. S. Petrochem. Technol. 2004, 33, 909.

    5. [5]

      Hamedi, N.; Iranshahi, D.; Rahimpour, M. R.; Raeissi, S.; Rajaei, H. J. Taiwan Inst. Chem. Eng. 2015, 48, 56.  doi: 10.1016/j.jtice.2014.10.015

    6. [6]

      Ali, S. A.; Ogunronbi, K. E.; Al-Khattaf, S. S. Chem. Eng. Res. Des. 2013, 91, 2601.  doi: 10.1016/j.cherd.2013.04.014

    7. [7]

      Ali, S. A.; Aitani, A. M.; Ercan, C.; Wang, Y.; Al-Khattaf, S. Chem. Eng. Res. Des. 2011, 89, 2125.  doi: 10.1016/j.cherd.2011.01.031

    8. [8]

      Tsai, T.-C.; Liu, S.-B.; Wang, I. Catal. Surv. Asia 2009, 13, 94.  doi: 10.1007/s10563-009-9070-z

    9. [9]

    10. [10]

      Chen, N. Y.; Degnan, T. F. Chem. Eng. Prog. 1988, 84, 32.

    11. [11]

      Lee, Y.-K.; Park, S.-H.; Rhee, H.-K. Catal. Today 1998, 44, 223.  doi: 10.1016/S0920-5861(98)00194-1

    12. [12]

      Chao, K.-J.; Leu, L.-J. Zeolites 1989, 9, 193.  doi: 10.1016/0144-2449(89)90025-0

    13. [13]

      Krejčí, A.; Al-Khattaf, S.; Ali, M. A.; Bejblová, M.; Čejka, J. Appl. Catal., A 2010, 377, 99.  doi: 10.1016/j.apcata.2010.01.026

    14. [14]

      Yue, Y. H.; Tang, Y.; Kan, Y. Z.; Gao, Z. Acta Chim. Sinica 1996, 54, 591.
       

    15. [15]

      Meshram, N. R.; Kulkarni, S. B.; Ratnasamy, P. J. Chem. Technol. Biotechnol., Chem. Technol. 1984, 34, 119.

    16. [16]

      Ji, Y. J.; Zhang, B.; Zhang, K.; Xu, L.; Peng, H. G.; Wu, P. 1980, 38, 191.(纪永军, 张斌, 张坤, 徐乐, 彭洪根, 吴鹏, 化学学报, 1980, 38, 191.)

    17. [17]

      Higgins, J. B.; LaPierre, R. B.; Schlenker, J. L.; Rohrman, A. C.; Wood, J. D.; Kerr, G. T.; Rohrbaugh, W. J. Zeolites 1988, 8, 446.  doi: 10.1016/S0144-2449(88)80219-7

    18. [18]

      Hegde, S. G.; Kumar, R.; Bhat, R. N.; Ratnasamy, P. Zeolites 1989, 9, 231.  doi: 10.1016/0144-2449(89)90031-6

    19. [19]

      Wang, I.; Tsai, T. C.; Huang, S. T. Ind. Eng. Chem. Res. 1990, 29, 2005.

    20. [20]

      Dumitriu, E.; Hulea, V.; Kaliaguine, S.; Huang, M. M. Appl. Catal., A 1996, 135, 57.  doi: 10.1016/0926-860X(95)00236-7

    21. [21]

      Corma, A.; Llopis, F.; Monton, J. B. J. Catal. 1993, 140, 384.  doi: 10.1006/jcat.1993.1092

    22. [22]

      Al-Khattaf, S.; Ali, S. A.; Aitani, A. M.; Zilkova, N.; Kubicka, D.; Cejka, J. Catal. Rev.: Sci. Eng. 2014, 56, 333.  doi: 10.1080/01614940.2014.946846

    23. [23]

      Corma, A.; Sastre, E. J. Catal. 1991, 129, 177.  doi: 10.1016/0021-9517(91)90021-U

    24. [24]

      Xiong, Y.; Rodewald, P. G.; Chang, C. D. J. Am. Chem. Soc. 1995, 117, 9427.  doi: 10.1021/ja00142a007

    25. [25]

      Svelle, S.; Olsbye, U.; Lillerud, K.-P.; Kolboe, S.; Bjørgen, M. J. Am. Chem. Soc. 2006, 128, 5618.  doi: 10.1021/ja060931w

    26. [26]

      Li, Y. C.; Wang, H.; Dong, M.; Li, J. F.; Qin, Z. F.; Wang, J. G.; Fan, W. B. RSC Adv. 2015, 5, 66301.  doi: 10.1039/C5RA09236A

    27. [27]

      Newsam, J.; Treacy, M. M.; Koetsier, W.; De Gruyter, C. Proc. R. Soc. Lond. A 1988, 420, 375.  doi: 10.1098/rspa.1988.0131

    28. [28]

      Min, H.-K.; Chidambaram, V.; Hong, S. B. J. Phys. Chem. C 2010, 114, 1190.  doi: 10.1021/jp9094408

    29. [29]

      Byun, Y.; Jo, D.; Shin, D. N.; Hong, S. B. ACS Catal. 2014, 4, 1764.  doi: 10.1021/cs500186y

    30. [30]

      Camblor, M. A.; Mifsud, A.; Pérez-Pariente, J. Zeolites 1991, 11, 792.  doi: 10.1016/S0144-2449(05)80057-0

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(0)
  • Abstract views(445)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return