Citation: Li Yanchun, Wang Hao, Dong Mei, Li Junfen, Wang Guofu, Qin Zhangfeng, Fan Weibin, Wang Jianguo. Optimization of Reaction Conditions in the Transalkylation of Toluene with 1, 2, 4-Trimethylbenzene Catalyzed by Beta Zeolite and the Investigation of Its Reaction Mechanism[J]. Acta Chimica Sinica, ;2016, 74(6): 529-537. doi: 10.6023/A16020077 shu

Optimization of Reaction Conditions in the Transalkylation of Toluene with 1, 2, 4-Trimethylbenzene Catalyzed by Beta Zeolite and the Investigation of Its Reaction Mechanism

  • Corresponding author: Wang Hao, wanghao@sxicc.ac.cn Fan Weibin, fanwb@sxicc.ac.cn
  • Received Date: 3 February 2016

    Fund Project: the National Natural Science Foundation of China 21273264the National Natural Science Foundation of China 21273263the Research Project Supported by Shanxi Scholarship Council of China 2014-102

Figures(9)

  • The effect of reaction conditions and acidic property of Beta zeolite on the transalkylation reaction between toluene and trimethylbenzene (TMB) was studied systematically. The results indicate that the activity and stability of catalysts are strongly dependent on the reaction conditions including reactant composition, reaction temperature and pressure, and crystal size as well as the acidic property of the zeolite. For TMB disproportionation reaction, the addition of toluene should be helpful to the increase of selectivity of xylene. In the meantime, for the disproportionation reaction of toluene, the mixing of TMB into feedstocks can also increase the xylene yield. Therefore, the higher yield of xylene is obtained at the equal molar ratio of toluene and TMB as feedstocks. The temperature of reaction plays an important role on the transalkylation of toluene with TMB. The catalytic activity of transalkylation increases gradually with the increasing of reaction temperature until 450 ℃, and then the dealkylation reaction and the formation of coke will be intensified with the further increasing of temperature, which leads to the decrease of catalytic stability. Therefore, the optimum temperature for transalkylation reaction is 450 ℃. The increasing of reaction pressure also has a positive effect on the catalytic activity of transalkylation. Thus, the transalkylation reaction is conducted at the pressure of 3 MPa taking into account the bearing capacity of reactor. The transalkylation catalytic activity is decreased with the increase of Si/Al ratio of Beta zeolite because of the reduction of the amount of acid sites that act as the active sites for transformation of alkylaromatics. The catalytic stability of zeolite could be significantly improved with the decrease of crystal size. In order to investigate the reaction mechanism of transalkylation, gas chromatography-mass spectrometry (GC-MS) technique is used to study the generation and decomposition of intermediate species over Beta zeolite during the transalkylation reaction at the lower experiment temperature of 150 ℃ because the intermediate species is instable at higher reaction temperature. The results indicate that the transalkylation of toluene with 1, 2, 4-TMB occurs via the bimolecular intermediate mechanism. As the bulky species, the formation and decomposition of these intermediate species require a large zeolite channel. Therefore, the Beta zeolite with 12 member-ring large pore shows higher catalytic activity for transalkylation reaction.
  • 加载中
    1. [1]

      Tsai, T.-C.; Liu, S.-B.; Wang, I. Appl. Catal. A 1999, 181, 355.  doi: 10.1016/S0926-860X(98)00396-2

    2. [2]

      Xu, O.; Su, H.; Ji, J.; Jin, X.; Chu, J. Chin. J. Chem. Eng. 2007, 15, 326.  doi: 10.1016/S1004-9541(07)60088-3

    3. [3]

      Tukur, N. M.; Al-Khattaf, S. Energy Fuels 2007, 21, 2499.  doi: 10.1021/ef7002602

    4. [4]

      Chen, Q. L.; Kong, D. J.; Yang, W. S. Petrochem. Technol. 2004, 33, 909.

    5. [5]

      Hamedi, N.; Iranshahi, D.; Rahimpour, M. R.; Raeissi, S.; Rajaei, H. J. Taiwan Inst. Chem. Eng. 2015, 48, 56.  doi: 10.1016/j.jtice.2014.10.015

    6. [6]

      Ali, S. A.; Ogunronbi, K. E.; Al-Khattaf, S. S. Chem. Eng. Res. Des. 2013, 91, 2601.  doi: 10.1016/j.cherd.2013.04.014

    7. [7]

      Ali, S. A.; Aitani, A. M.; Ercan, C.; Wang, Y.; Al-Khattaf, S. Chem. Eng. Res. Des. 2011, 89, 2125.  doi: 10.1016/j.cherd.2011.01.031

    8. [8]

      Tsai, T.-C.; Liu, S.-B.; Wang, I. Catal. Surv. Asia 2009, 13, 94.  doi: 10.1007/s10563-009-9070-z

    9. [9]

    10. [10]

      Chen, N. Y.; Degnan, T. F. Chem. Eng. Prog. 1988, 84, 32.

    11. [11]

      Lee, Y.-K.; Park, S.-H.; Rhee, H.-K. Catal. Today 1998, 44, 223.  doi: 10.1016/S0920-5861(98)00194-1

    12. [12]

      Chao, K.-J.; Leu, L.-J. Zeolites 1989, 9, 193.  doi: 10.1016/0144-2449(89)90025-0

    13. [13]

      Krejčí, A.; Al-Khattaf, S.; Ali, M. A.; Bejblová, M.; Čejka, J. Appl. Catal., A 2010, 377, 99.  doi: 10.1016/j.apcata.2010.01.026

    14. [14]

      Yue, Y. H.; Tang, Y.; Kan, Y. Z.; Gao, Z. Acta Chim. Sinica 1996, 54, 591.
       

    15. [15]

      Meshram, N. R.; Kulkarni, S. B.; Ratnasamy, P. J. Chem. Technol. Biotechnol., Chem. Technol. 1984, 34, 119.

    16. [16]

      Ji, Y. J.; Zhang, B.; Zhang, K.; Xu, L.; Peng, H. G.; Wu, P. 1980, 38, 191.(纪永军, 张斌, 张坤, 徐乐, 彭洪根, 吴鹏, 化学学报, 1980, 38, 191.)

    17. [17]

      Higgins, J. B.; LaPierre, R. B.; Schlenker, J. L.; Rohrman, A. C.; Wood, J. D.; Kerr, G. T.; Rohrbaugh, W. J. Zeolites 1988, 8, 446.  doi: 10.1016/S0144-2449(88)80219-7

    18. [18]

      Hegde, S. G.; Kumar, R.; Bhat, R. N.; Ratnasamy, P. Zeolites 1989, 9, 231.  doi: 10.1016/0144-2449(89)90031-6

    19. [19]

      Wang, I.; Tsai, T. C.; Huang, S. T. Ind. Eng. Chem. Res. 1990, 29, 2005.

    20. [20]

      Dumitriu, E.; Hulea, V.; Kaliaguine, S.; Huang, M. M. Appl. Catal., A 1996, 135, 57.  doi: 10.1016/0926-860X(95)00236-7

    21. [21]

      Corma, A.; Llopis, F.; Monton, J. B. J. Catal. 1993, 140, 384.  doi: 10.1006/jcat.1993.1092

    22. [22]

      Al-Khattaf, S.; Ali, S. A.; Aitani, A. M.; Zilkova, N.; Kubicka, D.; Cejka, J. Catal. Rev.: Sci. Eng. 2014, 56, 333.  doi: 10.1080/01614940.2014.946846

    23. [23]

      Corma, A.; Sastre, E. J. Catal. 1991, 129, 177.  doi: 10.1016/0021-9517(91)90021-U

    24. [24]

      Xiong, Y.; Rodewald, P. G.; Chang, C. D. J. Am. Chem. Soc. 1995, 117, 9427.  doi: 10.1021/ja00142a007

    25. [25]

      Svelle, S.; Olsbye, U.; Lillerud, K.-P.; Kolboe, S.; Bjørgen, M. J. Am. Chem. Soc. 2006, 128, 5618.  doi: 10.1021/ja060931w

    26. [26]

      Li, Y. C.; Wang, H.; Dong, M.; Li, J. F.; Qin, Z. F.; Wang, J. G.; Fan, W. B. RSC Adv. 2015, 5, 66301.  doi: 10.1039/C5RA09236A

    27. [27]

      Newsam, J.; Treacy, M. M.; Koetsier, W.; De Gruyter, C. Proc. R. Soc. Lond. A 1988, 420, 375.  doi: 10.1098/rspa.1988.0131

    28. [28]

      Min, H.-K.; Chidambaram, V.; Hong, S. B. J. Phys. Chem. C 2010, 114, 1190.  doi: 10.1021/jp9094408

    29. [29]

      Byun, Y.; Jo, D.; Shin, D. N.; Hong, S. B. ACS Catal. 2014, 4, 1764.  doi: 10.1021/cs500186y

    30. [30]

      Camblor, M. A.; Mifsud, A.; Pérez-Pariente, J. Zeolites 1991, 11, 792.  doi: 10.1016/S0144-2449(05)80057-0

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    11. [11]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    20. [20]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

Metrics
  • PDF Downloads(0)
  • Abstract views(568)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return