Citation: Yuan Zhenzhou, Liu Danmin, Tian Nan, Zhang Guoqing, Zhang Yongzhe. Structure, Preparation and Properties of Phosphorene[J]. Acta Chimica Sinica, ;2016, 74(6): 488-497. doi: 10.6023/A16010035 shu

Structure, Preparation and Properties of Phosphorene

  • Corresponding author: Liu Danmin, dmliu@bjut.edu.cn
  • Received Date: 16 January 2016

    Fund Project: the National Natural Science Foundation of China (NSFC) 61575010the Science and Technology Commission of Beijing Municipality Z151100003315018the National Natural Science Foundation of China (NSFC) 51302081the Beijing Nova Program Z141109001814053the Open subject of Key Laboratory of Semiconductor Materials Science Institute of Semiconductors, Chinese Academy of Sciences KLSMS-1404the Fundamental Research Funds for the Central Universities 222015Y-4006

Figures(11)

  • Two-dimensional (2D) materials have attracted broad interest because of their low-dimensional effect, and black phosphorus has become a member of them due to the successful preparation. Phosphorus has several allotropes, white phosphorus, red phosphorus and black phosphorus. Black phosphorus is most thermodynamic stable in them. Black phosphorus was obtained by a phase transition from white or red phosphorus at high pressure and high temperature. It is a natural p-type semiconductor in which each layer is vertically stacked by the van der Waals force. The thickness of black phosphorus can be scaled down to the atomic layer scale known as phosphorene by mechanical exfoliation or liquid exfoliation. In nowadays, pulsed laser deposition (PLD) has also been used in synthesis of phosphorene film. Compared with black phosphorus, phosphorene's physical properties have significant changes. The band gap in bulk black phosphorus is 0.3 eV and can be expanded to 1.0 to 1.5 eV depending on the layer numbers. The range of phosphorene band gap corresponds to an absorption spectrum between visible light to infrared. Moreover, the band gap of phosphorene is also highly sensitive to the strain either in-plane or out-of-plane. The phosphorene based field effect transistor (FET) exhibits a high mobility and appreciably high on/off ratios, and the mobility is thickness dependent. Unlike other two-dimensional (2D) materials, phosphorene has in-plane anisotropy which is suitable for the detecting of polarized light. Hence, the unique properties in black phosphorus, along with its high carrier mobility, make it as a promising material in electronic applications. Nevertheless, the poor chemical and structural stability of black phosphorus and phosphorene raises important concerns. In the past century, the synthesis, physical properties, and device applications have been extensively investigated in various studies. In this review article, a lot of references of black phosphorus are cited to introduce systematically the research progresses of structure and preparation, the study of material properties and device performance, the chemistry of the degradation process and the anti-degradation treatments. At last, the development trend of phosphorene is mentioned.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2006, 206, 666. (b) Rader, O.; Varykhalov, A.; Sánchez-Barriga, J.; Marchenko, D.; Rybkin, A.; Shikin, A. M. Phys. Rev. Lett. 2009, 102, 057602. (c) Barone, V.; Peralta, J. E. Nano Lett. 2008, 8, 2210. (d) Li, W.; Zhang, G.; Guo, M.; Zhang, Y. W. Nano Res. 2014, 7, 518. (e) Duerloo, K. N.; Li, Y.; Reed, E. J. Nat. Commun. 2014, 5, 4214. (f) Peng, H. L. Acta Chim. Sinica 2015, 73, 861 (in Chinese).(彭海琳, 化学学报, 2015, 73, 861.)

    2. [2]

      Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Grigorieva, M. K. I.; Dubonos, S.; Firsov, A. Nature 2005, 438, 197. (b) Novoselov, K.; McCann, E.; Morozov, S.; Fal' ko, V. I.; Katsnelson, M.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A. Nature Phys. 2006, 2, 177. (c) Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.

    3. [3]

      Liao, L.; Lin, Y. C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X. Nature 2010, 467, 305. (b) Schwierz, F. Nature Nanotech. 2010, 5, 487. (c) Wu, Y.; Lin, Y.-M.; Bol, A. A.; Jenkins, K. A.; Xia, F.; Farmer, D. B.; Zhu, Y.; Avouris, P. Nature 2011, 472, 74.

    4. [4]

      Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805.  doi: 10.1103/PhysRevLett.105.136805

    5. [5]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nature Nanotech. 2011, 6, 147. (b) Yoon, Y.; Ganapathi, K.; Salahuddin, S. Nano Lett. 2011, 11, 3768.

    6. [6]

      Liu, H.; Neal, A. T.; Ye, P. D. ACS Nano 2012, 6, 8563. (b) Popov, I.; Seifert, G.; Tománek, D. Phys. Rev. Lett. 2012, 108, 156802. (c) Das, S.; Chen, H.-Y.; Penumatcha, A. V.; Appenzeller, J. Nano Lett. 2013, 13, 100.

    7. [7]

      Radisavljevic, B.; Radenovi, A.; Brivio, J.; Giacometti, V.; Kis, A. Nature Nanotech. 2011, 6, 147.  doi: 10.1038/nnano.2010.279

    8. [8]

      Fuhrer, M. S.; Hone, J. Nature Nanotech. 2013, 8, 146. (b) Radisavljevic, B.; Kis, A. Nature Nanotech. 2013, 8, 147.

    9. [9]

      Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nature Nanotech. 2014, 9, 372.  doi: 10.1038/nnano.2014.35

    10. [10]

      Brown, A.; Rundqvist, S. Acta Crystallogr. 1965, 19, 684. (b) Jamieson, J. C. Science 1963, 139, 1291. 

    11. [11]

      Keyes, R. W. Phys. Rev. 1953, 92, 580. (b) Takao, Y.; Morita, A. Phys. B 1981, 105, 93.

    12. [12]

      Zhang, C. D.; Lian, J. C.; Yi, W.; Jiang, Y. H.; Liu, L. W.; Hu, H.; Xiao, W. D.; Du, S. X.; Sun, L. L.; Gao, H. J. J. Phys. Chem. C 2009, 113, 18823. (b) Gagarin, S. G.; Teterin, Y. A. Plenum Publishing Corp. 1986, 26, 535.

    13. [13]

      Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. Nat. Commun. 2014, 5, 4475.

    14. [14]

      Dai, J.; Zeng, X. C. J. Phys. Chem. Lett. 2014, 5, 1289.  doi: 10.1021/jz500409m

    15. [15]

      Wang, X. S.; Xie, L. M.; Zhang, J. Acta Chim. Sinica 2015, 73, 886 (in Chinese).

    16. [16]

    17. [17]

      Johari, P.; Shenoy, V. B. ACS Nano 2012, 6, 5449. (b) Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.; Stesmans, A. Nano Res. 2012, 5, 43.

    18. [18]

      Rodin, A. S.; Carvalho, A.; Neto, A. C. Phys. Rev. Lett. 2014, 112, 176801.  doi: 10.1103/PhysRevLett.112.176801

    19. [19]

      Peng, X.; Wei, Q.; Copple, A. Phys. Rev. B 2014, 90, 085402.  doi: 10.1103/PhysRevB.90.085402

    20. [20]

      Manjanath, A.; Samanta, A.; Pandey, T.; Singh, A. K. Nanotechnology 2015, 26, 075701.  doi: 10.1088/0957-4484/26/7/075701

    21. [21]

      Bridgman, P. W. J. Am. Chem. Soc. 1914, 36, 1344.  doi: 10.1021/ja02184a002

    22. [22]

      Bridgman, P. W. AAAS 1948, 76, 55.

    23. [23]

      Bridgman, P. W. Phys. Rev. 1935, 48, 825. (b) Bridgman, P. W. AAAS 1937, 71, 387.

    24. [24]

      Maruyama, Y.; Suzuki, S.; Kobayashi, K.; Tanuma, S. Physica B & C 1981, 105, 99.

    25. [25]

      Endo, S.; Akahama, Y.; Terada, S. I.; Narita, S. I. Jpn. J. Appl. Phys. 1982, 21, L482.  doi: 10.1143/JJAP.21.L482

    26. [26]

      Park, C. M.; Sohn, H. J. Adv. Mater. 2007, 19, 2465.  doi: 10.1002/(ISSN)1521-4095

    27. [27]

      Lange, S.; Schmidt, P.; Nilges, T. Inorg. Chem. 2007, 46, 4028.  doi: 10.1021/ic062192q

    28. [28]

      Nilges, T.; Kersting, M.; Pfeifer, T. J. Solid State Chem. 2008, 181, 1707.  doi: 10.1016/j.jssc.2008.03.008

    29. [29]

      Xia, F.; Wang, H.; Jia, Y. Nat. Commun. 2014, 5, 4458. (b) Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; vander Zant, H. S. J.; Castellanos-Gomez, A. Nano Lett. 2014, 14, 3347. (c) Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Archarya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; Zandbergen, H. W.; Palacios, J. J.; vander Zant, H. S. J. 2D Mater. 2014, 1, 025001. (d) Engel, M.; Steiner, M.; Avouris, P. Nano Lett. 2014, 14, 6414. (e) Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Özyilmaz, B. Appl. Phys. Lett. 2014, 104, 103106. (f) Lu, W.; Nan, H.; Hong, J.; Chen, Y.; Liang, Z.; Ni, Z.; Jin, C.; Zhang, Z. Nano Res. 2014, 7, 853.

    30. [30]

      Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Science 2013, 340, 1226419. (b) Zhuo, S.; Shao, M.; Lee, S. T. ACS Nano 2012, 6, 1059.

    31. [31]

      Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O'Brien, P. Chem. Commun. 2014, 50, 13338.  doi: 10.1039/C4CC05752J

    32. [32]

      Guo, Z.; Zhang, H.; Lu, S.; Wang, Z.; Tang, S.; Shao, J.; Sun, Z.; Xie, H.; Wang, H.; Yu, X.-F.; Chu, P. K. Adv. Funct. Mater. 2015, 25, 6996.  doi: 10.1002/adfm.201502902

    33. [33]

      Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. Adv. Mater. 2015, 27, 1887.  doi: 10.1002/adma.v27.11

    34. [34]

      Zhang, X.; Xie, H.; Liu, Z.; Tan, C.; Luo, Z.; Li, H.; Lin, J.; Sun, L.; Chen, W.; Xu, Z.; Xie, L.; Huang, W.; Zhang, H. Angew. Chem. Int. Ed. 2015, 54, 3653.  doi: 10.1002/anie.201409400

    35. [35]

      Yang, Z.; Hao, J.; Yuan, S.; Lin, S.; Yau, H. M.; Dai, J.; Lau, S. P. Adv. Mater. 2015, 27, 3748.  doi: 10.1002/adma.v27.25

    36. [36]

      Wu, J. X.; Xu, H.; Zhang, J. Acta Chim. Sinica 2014, 72, 301 (in Chinese).(吴娟霞, 徐华, 张锦, 化学学报, 2014, 72, 301.) (b) Wang, X.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F. Nature Nanotech. 2015, 10, 517. 

    37. [37]

      Sugai, S.; Shirotani, I. Solid State Commun. 1985, 53, 753. (b) Fei, R.; Yang, L. Appl. Phys. Lett. 2014, 105, 083120.

    38. [38]

      Wei, Q.; Peng, X. Appl. Phys. Lett. 2014, 104, 251915. (b) Jiang, J. W; Park, H. S. J. Phys. D: Appl. Phys. 2014, 47, 385304. (c) Jiang, J. W; Park, H. S. Nat. Commun. 2014, 5, 4727. (d) Jiang, J. W; Rabczuk, T.; Park, H. S. Nanoscale 2015, 7, 6059. (e) Warschauer, D. J. Appl. Phys. 1963, 34, 1853.

    39. [39]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. (b) Liu, F.; Ming, P.; Li, J. Phys. Rev. B 2007, 76, 064120.

    40. [40]

      Hicks, L. D.; Dresselhaus, M. S. Phys. Rev. B 1993, 47, 12727.  doi: 10.1103/PhysRevB.47.12727

    41. [41]

      Fei, R.; Faghaninia, A.; Soklaski, R.; Yan, J. A.; Lo, C.; Yang, L. Nano Lett. 2014, 14, 6393.  doi: 10.1021/nl502865s

    42. [42]

      Konabe, S.; Yamamoto, T. Appl. Phys. Express 2015, 8, 015202.  doi: 10.7567/APEX.8.015202

    43. [43]

      Yin, D.; Han, G.; Yoon, Y. IEEE Electr. Device L. 2015, 36, 978.  doi: 10.1109/LED.2015.2456835

    44. [44]

      Das, S.; Demarteau, M.; Roelofs, A. ACS Nano 2014, 8, 11730.  doi: 10.1021/nn505868h

    45. [45]

      Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Nature Nanotech. 2013, 8, 497.  doi: 10.1038/nnano.2013.100

    46. [46]

      Perea-López, N.; Elí#237;as, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R.; Hayashi, T.; López-Urías, F.; Ghosh, S.; Muchharla, B.; Talapatra, S.; Terrones, H.; Terrones, M. Adv. Funct. Mater. 2013, 23, 5511.  doi: 10.1002/adfm.v23.44

    47. [47]

      Jacobs-Gedrim, R. B.; Shanmugam, M.; Jain, N.; Durcan, C. A.; Murphy, M. T.; Murray, T. M.; Matyi, R. J.; Moore, R. L.; Yu, B. ACS Nano 2013, 8, 514.

    48. [48]

      Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. ACS Nano 2012, 6, 5988.  doi: 10.1021/nn300889c

    49. [49]

      Deng, Y.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X.; Ye, P. D. ACS Nano 2014, 8, 8292.  doi: 10.1021/nn5027388

    50. [50]

      Huang, X.; Qi, X.; Boey, F.; Zhang, H. Chem. Soc. Rev. 2012, 41, 666. (b) Huang, X.; Zeng, Z.; Zhang, H. Chem. Soc. Rev. 2013, 42, 1934. (c) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nature Chem. 2013, 5, 263. (d) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nature Nanotech. 2012, 7, 699.

    51. [51]

      Favron, A.; Gaufrès, E.; Fossard, F.; Lévesque, P. L.; Phaneuf-L'Heureux, A. L.; Tang, N.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Eprint Arxiv 2014, 1408, 0345.

    52. [52]

      Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Nano Lett. 2014, 14, 6964.  doi: 10.1021/nl5032293

    53. [53]

      Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. ACS Nano 2015, 9, 4138.  doi: 10.1021/acsnano.5b00289

    54. [54]

      Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Nature Nanotech. 2010, 5, 722. (b) Lee, G.-H.; Yu, Y.-J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Appl. Phys. Lett. 2011, 99, 243114.

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(0)
  • Abstract views(13852)
  • HTML views(4498)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return