Citation: Wang Xin, Tan Lili, Yang Yingwei. Controlled Drug Release Systems Based on Mesoporous Silica Capped by Gold Nanoparticles[J]. Acta Chimica Sinica, ;2016, 74(4): 303-311. doi: 10.6023/A16010003
-
Nanotechnology, with many advantages to engineer new organized nanomaterials, has attracted much attention in recent decades. Smart drug delivery and controlled release system can enhance the effectiveness of chemotherapy at diseased body parts and reduce its side effects of drugs on normal tissues and cells. With high rigidity and surface area, tailored mesoporous structure, and good biocompatibility, mesoporous silica nanoparticles (MSNs) have been proven to be excellent nanocarriers and delivery vehicle. In the mean time, gold nanoparticles (AuNPs) possess a number of advantages of gold-based nanomaterials that make them appealing for controlled drug delivery applications. The novel nanovalve systems based on MSNs (acting as nanocontainers or reservoirs)-AuNPs (acting as gates or switches), combining the good characteristics of the two kinds of nanoparticles in one system, has captured research interests in the fields of chemistry, biomaterials, nanoscience and clinical medicine. This review article introduces important research progress on the single and multiple functions of controllable drug release systems based on MSN-AuNPs hybrids, which will be illustrated from stimulus and applications points of view. In the section of single responsive systems, we introduce the adaptability and responsiveness of the hybrid systems to external environmental stimuli, such as light (UV and NIR), pH, competitive binding, aptamers, and biological signals. In the section of multiple responsive systems, we focus on the design principle and release effect of dual responsive systems and reversible systems. In addition, the challenges and development direction of this type of nanovalve-based drug delivery systems are systematically discussed. Although the nanogate systems based on MSNs capped by AuNPs, employing many different functions, have made tremendous progress in recent years, collaborations between chemists, material scientists, engineers and medical doctors are in urgent need to further advance this research field and realize their final practical applications in the near future.
-
-
[1]
[1] Bangham, A. D.; Standish, M. M.; Watkins, J. C. Mol. Biol. 1965, 13, 238.
-
[2]
[2] Langer, R.; Brem, H.; Falterman, K.; Klein, M.; Folkman, J. Science 1976, 193, 70.
-
[3]
[3] Zhao, L.; Ding, J.; Xiao, C.; Cheng, X.; Gai, G.; Wang, L. Acta Chim. Sinica 2015, 73, 60. (赵丽, 丁建勋, 肖春生, 陈学思, 盖广清, 王丽艳, 化学学报, 2015, 73, 60.)
-
[4]
[4] Li, J.; Shi, X. Acta Chim. Sinica 2011, 69, 2439 (李建平, 石鑫, 化学学报, 2011, 69, 2439.)
-
[5]
[5] Zhang, Y.; Yang, B.; Xu, L.; Zhang, X.; Tao, L.; Wei, Y. Acta Chim. Sinica 2013, 71, 485 (张亚玲, 杨斌, 许亮鑫, 张小勇, 陶磊, 危岩, 化学学报, 2013, 71, 485.)
-
[6]
[6] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W. J. Am. Chem. Soc. 1992, 114, 10834.
-
[7]
[7] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
-
[8]
[8] Hernandez, R.; Tseng, H.-R.; Wong, J. W.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2004, 126, 3370.
-
[9]
[9] Yang, Y.-W. Med. Chem. Commun. 2011, 2, 1033.
-
[10]
[10] Hu, Y.; Wang, J.; Zhi, Z.; Jiang, T.; Wang, S. J. Colloid. Interface Sci. 2011, 363, 410.
-
[11]
[11] Li, Q.-L.; Sun, Y.; Sun, Y.-L.; Wen, J.; Zhou, Y.; Bing, Q.-M.; Isaacs, L. D.; Jin, Y.; Gao, H.; Yang, Y.-W. Chem. Mater. 2014, 26, 6418.
-
[12]
[12] Colilla, M.; González, B.; Vallet-Regí, M. Biomater. Sci. 2013, 1, 114.
-
[13]
[13] Sun, Y.-L.; Zhou, Y.; Li, Q.-L.; Yang, Y.-W. Chem. Commun. 2013, 49, 9033.
-
[14]
[14] Gibson, L. T. Chem. Soc. Rev. 2014, 43, 5173.
-
[15]
[15] Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.-F.; Ugliengo, P. Chem. Rev. 2013, 113, 4216.
-
[16]
[16] Zhou, Z.; Zheng, Y.; Wang, Q. Inorg. Chem. 2014, 53, 1530.
-
[17]
[17] Song, W.; Li, J.; Li, Q.; Ding, W.; Yang, X. Anal. Biochem. 2015, 471, 17.
-
[18]
[18] Zhang, Q.; Neoh, K. G.; Xu, L.; Lu, S.; Kang, E. T.; Mahendran, R.; Chiong, E. Langmuir 2014, 30, 6151.
-
[19]
[19] Lee, D. Y.; Hong, J. W.; Park, C.; Lee, H.; Lee, J. E.; Hyeon, T.; Paik, S. R. ACS Nano 2014, 8, 8887.
-
[20]
[20] Huh, S.; Chen, H.-T.; Wiench, J. W.; Pruski, M.; Lin, S.-Y. J. Am. Chem. Soc. 2004, 126, 1010.
-
[21]
[21] Crudden, C. M.; Sateesh, M.; Lewis, R. J. Am. Chem. Soc. 2005, 127, 10045.
-
[22]
[22] Yokoi, T.; Kubota, Y.; Tatsumi, T. Appl. Catal. A-Gen. 2012, 421, 14.
-
[23]
[23] Lin, Y.; Ren, J.; Qu, X. Acc. Chem. Res. 2014, 47, 1097.
-
[24]
[24] Vallet-Regi, M.; Rámila, A.; Del Real, R. P.; Pérez-Pariente, J. Chem. Mater. 2001, 13, 308.
-
[25]
[25] Zhang, Q.; Liu, F.; Nguyen, K. T.; Ma, X.; Wang, X.; Xing, B.; Zhao, Y. Adv. Funct. Mater. 2012, 22, 5144.
-
[26]
[26] Yang, Y.-W.; Sun, Y.-L.; Song, N. Acc. Chem. Res. 2014, 47, 1950.
-
[27]
[27] Song, N.; Yang, Y.-W. Chem. Soc. Rev. 2015, 44, 3474.
-
[28]
[28] Gan, Q.; Lu, X.; Dong, W.; Yuan, Y.; Qian, J.; Li, Y.; Shi, J.; Liu, C. J. Mater. Chem. 2012, 22, 15960.
-
[29]
[29] Aznar, E.; Marcos, M. D.; Martínez-Máñez, R.; Sancenón, F.; Soto. J.; Amorós, P.; Guillem, C. J. Am. Chem. Soc. 2009, 131, 6833.
-
[30]
[30] Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. J. Am. Chem. Soc. 2011, 133, 8778.
-
[31]
[31] Schlossbauer, A.; Kecht, J.; Bein, T. Angew. Chem., Int. Ed. 2009, 48, 3092.
-
[32]
[32] You, Y.-Z.; Kalebaila, K. K.; Brock, S. L.; Oupický, D. Chem. Mater. 2008, 20, 3354.
-
[33]
[33] Wu, C.; Chen, C.; Lai, J.; Chen, J.; Mu, X.; Zheng, J.; Zhao, Y. Chem. Commun. 2008, 2662.
-
[34]
[34] Lai, J.; Mu, X.; Xu, Y.; Wu, X.; Wu, C.; Li, C.; Chen, J.; Zhao, Y. Chem. Commun. 2010, 46, 7370.
-
[35]
[35] Leung, K. C.-F.; Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. Chem. Mater. 2006, 18, 5919.
-
[36]
[36] Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C.-F.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626.
-
[37]
[37] Xing, L.; Zheng, H.; Cao, Y.; Che, S. Adv. Mater. 2012, 24, 6433.
-
[38]
[38] Wu, X.; Wang, Z.; Zhu, D.; Zong, S.; Yang, L.; Zhong, Y.; Cui, Y. ACS Appl. Mater. Interfaces 2013, 5, 10895.
-
[39]
[39] Qian, R.; Ding, L.; Ju, H. J. Am. Chem. Soc. 2013, 135, 13282.
-
[40]
[40] Sahk, K.; Agasti, S. S.; Kim, C.; Li, X. N.; Rotello, V. M. Chem. Rev. 2012, 112, 2739.
-
[41]
[41] Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; EI-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740.
-
[42]
[42] Chen, M.; Goodman, D. W. Chem. Soc. Rev. 2008, 37, 1860.
-
[43]
[43] Li, H. Ph. D. Dissertation, Jilin University, Changchun, 2015. (李慧, 博士论文, 吉林大学, 长春, 2015.)
-
[44]
[44] Mieszawska, A. J.; Mulder, W. J. M.; Fayad, Z. A.; Cormode, D. P. Mol. Pharm. 2013, 10, 831.
-
[45]
[45] Payne, E. K.; Shuford, K. L.; Park, S.; Schatz, G. C.; Mirkin, C. A. J. Phys. Chem. B 2006, 110, 2150.
-
[46]
[46] Hu, M.; Petrova, H.; Chen, J.; McLellan, J. M.; Siekkinen, A. R.; Marquez, M.; Li, X.; Xia, Y.; Hartland, G. V. J. Phys. Chem. B 2006, 110, 1520.
-
[47]
[47] Fleischer, M.; Zhang, D.; Braun, K.; Jäger, S.; Ehlich, R.; Häffner, M.; Stanciu, C.; Hörber, J. K. H.; Meixner, A. J.; Kern, D. P. Nanotechnology 2010, 21, 065301.
-
[48]
[48] Kneipp, J.; Kneipp, H.; Rice, W. L.; Kneipp, K. Anal. Chem. 2005, 77, 2381.
-
[49]
[49] Heo, D. N.; Yang, D. H.; Moon, H.-J.; Lee, J. B.; Bae, M. S.; Lee, S. C.; Lee, W. J.; Sun, I.-C.; Kwon, I. K. Biomaterials 2012, 33, 856.
-
[50]
[50] Xu, J. Ph. D. Dissertation, Sichuan University, Chengdu, 2007. (徐俊强, 博士论文, 四川大学, 成都, 2007.)
-
[51]
[51] Sun, Y.-L.; Yang, B.-J.; Zhang, S. X.-A.; Yang, Y.-W. Chem. Eur. J. 2012, 18, 9212.
-
[52]
[52] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.
-
[53]
[53] Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55.
-
[54]
[54] Frens, G. Nat. Phys. Sci. 1973, 241, 20.
-
[55]
[55] Li, H.; Chen, D.-X.; Sun, Y.-L.; Zheng, B. Y.; Tan, L.-L.; Weiss, P. S.; Yang, Y.-W. J. Am. Chem. Soc. 2013, 135, 1570.
-
[56]
[56] Raghuram, R. K.; Flavia, F.; Gennaro, D.; Ludovic, D.; Wafa, A.; Bhavik, A. P.; Gareth, W. V. C.; Ian, A. G.; Dipak, S.;. Mikhalovsky, S. V.; Cragg, P. J. Supramol. Chem. 2016, DOI: 10. 1080/10610278.2015.1111375.
-
[57]
[57] Hostetler, M. J.; Wingate, J. E.; Zhong, C.-J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W. Langmuir 1998, 14, 17.
-
[58]
[58] Panda, T.; Deepa, K. J. Nanosci. Nanotech. 2011, 11, 10279.
-
[59]
[59] Ghosh, P. S.; Kim, C.-K.; Han, G.; Forbes, N. S.; Rotello, V. M. ACS Nano 2008, 2, 2213.
-
[60]
[60] Mulder, W. J. M.; Strijkers, G. J.; Van Tilborg, G. A. F.; Cormode, D. P.; Fayad, Z. A.; Nicolay, K. Acc. Chem. Res. 2009, 42, 904.
-
[61]
[61] Tang, D.; Lin, Y.; Zhou, Q.; Lin, Y.; Li, P.; Niessner, R.; Knopp, D.; Anal. Chem. 2014, 86, 11451.
-
[62]
[62] Vivero-Escoto, J. L.; Slowing, I. I.; Wu, C.-W.; Lin, S.-Y. J. Am. Chem. Soc. 2009, 131, 3462.
-
[63]
[63] Luo, G.; Chen, W.; Jia, H.; Sun, Y.; Cheng, H.; Zhuo, R.; Zhang, X. Nano. Res. 2015, 8, 1893.
-
[64]
[64] Chen, L.; Di, J.; Cao, C.; Zhao, Y.; Ma, Y.; Luo, J.; Wen, Y.; Song, W.; Song, Y.; Jiang, L. Chem. Commun. 2011, 47, 2850.
-
[65]
[65] Wen, Y; Xu, L.; Wang, W.; Wang, D.; Du, H.; Zhang, X. Nanoscale 2012, 4, 4473.
-
[66]
[66] Nadrah. P.; Planinšek, O.; Gaberšček, M. J. Mater. Sci. 2014, 49, 481.
-
[67]
[67] Ott, A.; Yu, X.; Hartmann, R.; Rejman, J.; Schütz, A.; Ochs, M.; Parak, W. J.; Carregal-Romero, S. Chem. Mater. 2015, 27, 1929.
-
[68]
[68] Li, H.; Tan, L.-L.; Jia, P.; Li, Q.-L.; Sun, Y.-L.; Zhang, J.; Ning, Y.-Q.; Yu, J.; Yang, Y.-W. Chem. Sci. 2014, 5, 2804.
-
[69]
[69] Li, Q.-L.; Xu, S.-H.; Zhou, H.; Wang, X.; Dong, B.; Gao, H.; Tang, J.; Yang, Y.-W. ACS Appl. Mater. Interfaces 2015, 7, 28656.
-
[70]
[70] Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P. J. Am. Chem. Soc. 2010, 132, 1500.
-
[71]
[71] Zhu, C.-L.; Lu, C.-H.; Song, X.-Y.; Yang, H,-H.; Wang, X.-R. J. Am. Chem. Soc. 2011, 133, 1278.
-
[72]
[72] Chen, L.; Wen, Y.; Su, B.; Di, J.; Song, Y.; Jiang, L.; J. Mater. Chem. 2011, 21, 13811.
-
[73]
[73] Wen, Y.; Xu, L; Li, C.; Du, H.; Chen, L.; Su, B.; Zhang, Z.; Zhang, X.; Song, Y. Chem. Commun. 2012, 48, 8410.
-
[74]
[74] Zhang, R.; Li, L.; Feng, J.; Tong, L.; Wang, Q.; Tang, B. ACS Appl. Mater. Interfaces 2014, 6, 9932.
-
[75]
[75] Gui, W.; Wang, W.; Jiao, X.; Chen, L.; Wen, Y.; Zhang, X. ChemPhysChem 2015, 16, 607.
-
[1]
-
-
[1]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[2]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[3]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[4]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[5]
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
-
[6]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[7]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[8]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[9]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[10]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[11]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[12]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[13]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[14]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[15]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[16]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[17]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[18]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[19]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[20]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(451)
- HTML views(35)