Citation: Xia Zhiqing, Shao Andong, Li Qiang, Zhu Shiqin, Zhu Weihong. Substituent Effect on Quinoline-Malononitrile AIE Fluorescent Properties[J]. Acta Chimica Sinica, ;2016, 74(4): 351-355. doi: 10.6023/A16010001 shu

Substituent Effect on Quinoline-Malononitrile AIE Fluorescent Properties

  • Corresponding author: Zhu Weihong, 
  • Received Date: 3 January 2016

    Fund Project: 项目受国家自然科学基金(No. 21325625, 21476076)资助. (No. 21325625, 21476076)

  • As well-known, traditional luminescent dyes such as dicyanomethylene-4H-pyran (DCM) luminogens used in biological diagnosis and therapy still exit several limitations due to their inherent molecular structures. One of the most notorious phenomena is "aggregation caused quenching" (ACQ), namely that the fluorescence can be easily observed in dilute solution, but quenched in high concentration or aggregated state. Therefore, how to understand the aggregation environment formed by dye molecules and further utilize the aggregate itself as a potential pattern for biomedical application is highly desirable. Since the intriguing discovery of the aggregation-induced emission (AIE) phenomenon, much effort has been paid to exploration of AIE systems and their applications. These AIE chromophores exhibit highly bright fluorescence when aggregated, and weak fluorescence when dissolved in solution, making them beneficial for improving the sensitivity of biosensors and bioimaging in situ or in vivo. Herein we set out to construct a novel AIE-active quinoline-malononitrile (QM) building block, by merely replacing the oxygen atom in DCM moiety with N-ethyl group, thoroughly solving the fluorescence quenching problems of DCM derivatives in aggregation. Five QM derivatives (QM-H, QM-F, QM-Br, QM-I and QM-N) with different substituent groups have been successfully synthesized by Knoevenagel reaction, extending the AIE wavelength from 528 to 614 nm in the aggregated state. A series of experiments were performed to examine the photoluminescence properties of QM-H, QM-F, QM-Br, QM-I and QM-N. As expected, all these AIE-active compounds show weak or no fluorescence in molecular state when dissolved in THF solution, but enhanced emission in solid or aggregate state along with an increasing volume fraction of water in tetrahydrofuran/water (THF/H2O) mixtures. Moreover, their AIE-active fluorescent properties are dependent upon the different aggregated microenvironment affected by substituent groups of QM derivatives. Notably, the halogen atoms of QM-F, QM-Br and QM-I play important role in AIE quantum yield, while introducing electron donor group shifts the solid fluorescence of QM-N into red emission. The substituent effect of QM derivatives with excellent AIE properties can provide a platform to develop NIR AIE materials.
  • 加载中
    1. [1]

      [1] Guo, Z. Q.; Zhu, W. H.; Tian, H. Chem. Commun. 2012, 48, 6073.

    2. [2]

      [2] Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.

    3. [3]

      [3] (a) Chen, C. H. Chem. Mater. 2004, 16, 4389.

    4. [4]

      (b) Zhong, H. L.; Lai, H.; Fang, Q. J. Phys. Chem. C 2011, 115, 2423.

    5. [5]

      [4] Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 18, 1740.

    6. [6]

      [5] (a) Kwok, R. T. K.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2015, 44, 4228.

    7. [7]

      (b) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.

    8. [8]

      (c) Guo, Z. Q.; Shao, A. D.; Zhu, W. H. J. Mater. Chem. C 2016, DOI: 10. 1039/C5TC03369A.

    9. [9]

      [6] (a) Zhang, X. Q.; Zhang, X. Y.; Yang, B.; Zhang, Y. L.; Wei, Y. ACS Appl. Mater. Interfaces 2014, 6, 3600.

    10. [10]

      (b) Wang, S.; Zhu, Z.; Wei, D. Q.; Yang, C. L. J. Mater. Chem. C 2015, 3, 11902.

    11. [11]

      [7] Yao, L.; Zhang, S. T.; Wang, R.; Li, W. J.; Shen, F. Z.; Yang, B.; Ma, Y. G. Angew. Chem., Int. Ed. 2014, 53, 2119.

    12. [12]

      [8] (a) Hu, F.; Huang, Y. Y.; Zhang, G. X.; Zhao, R.; Yang, H.; Zhang, D. Q. Anal. Chem. 2014, 86, 7987.

    13. [13]

      (b) Xun, Z. Q.; Tang, H. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Zhang, X. H.; Li, Y. Acta Chim. Sinica 2015, 73, 819. (寻知庆, 唐海云, 曾毅, 陈金平, 于天君, 张小辉, 李嫕, 化学学报, 2015, 73, 819.)

    14. [14]

      (c) Li, Y. D.; Zhang, H.; Wang, X. C.; Wang, F.; Xia, Y. J. Acta Chim., Sinica 2015, 73, 1055. (李昱达, 张恒, 王迅昶, 汪锋, 夏养君, 化学学报, 2015, 73, 1055.)

    15. [15]

      [9] Lu, H. G.; Zheng, Y. D.; Zhao, X. W.; Wang, L. J.; Ma, S. Q.; Han, X. Q.; Xu, B.; Tian, W. J.; Gao, H. Angew. Chem. Int. Ed. 2016, 55, 155.

    16. [16]

      [10] Chi, Z. G.; Zhang, X. Q.; Xu, B. J.; Zhou, X.; Ma, C. P.; Zhang, Y.; Liu, S. W.; Xu, J. R. Chem. Soc. Rev. 2012, 41, 3878.

    17. [17]

      [11] Huang, J.; Jiang, Y. B.; Yang, J.; Tang, R. L.; Xie, N.; Li, Q. Q.; Kwok, H. S.; Tang, B. Z.; Li, Z. J. Mater. Chem. C 2014, 2, 2028.

    18. [18]

      [12] Zhang, Y. P.; Li, D. D.; Li, Y.; Yu, J. H. Chem. Sci. 2014, 5, 2710.

    19. [19]

      [13] (a) Zhang, S.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. Prog. Chem. 2011, 23, 623. (张双, 秦安军, 孙景志, 唐本忠, 化学进展, 2011, 23, 623.)

    20. [20]

      (b) Zhao, G. S.; Shi, C. X.; Guo, Z. Q.; Zhu, W. H.; Zhu, S. Q. Chin. J. Org. Chem. 2012, 32, 1620. (赵国生, 史川兴, 郭志前, 朱为宏, 朱世琴, 有机化学, 2012, 32, 1620.)

    21. [21]

      (c) Liu, P.; Chen, D. D.; Feng, X.; Shi, J. B.; Tong, B.; Dong, Y. P. Imag. Sci. Photochem. 2015, 33, 441 (in Chinese). (刘派, 陈笛笛, 冯霄, 石建兵, 佟斌, 董宇平, 影像科学与光化学, 2015, 33, 441.)

    22. [22]

      (d) Yu, H. B.; Li, H. L.; Zhang, X. F.; Xiao, Y.; Fang, P. J.; Lü, C. J.; Hou, W. Acta Chim. Sinica 2015, 73, 450. (于海波, 李红玲, 张新富, 肖义, 方沛菊, 吕春娇, 侯伟, 化学学报, 2015, 73, 450.)

    23. [23]

      [14] Shi, C. X.; Guo, Z. Q.; Yan, Y. L.; Zhu, S. Q.; Xie, Y. S.; Zhao, Y. S.; Zhu, W. H.; Tian, H. ACS Appl. Mater. Interfaces 2012, 5, 192.

    24. [24]

      [15] Shao, A. D.; Guo, Z. Q.; Zhu, S. J.; Zhu, S. Q.; Shi, P.; Tian, H.; Zhu, W. H. Chem. Sci. 2014, 5, 1383.

    25. [25]

      [16] Shao, A. D.; Xie, Y. S.; Zhu, S. J.; Guo, Z. Q.; Zhu, S. Q.; Guo, J.; James, T. D.; Tian, H.; Zhu, W. H. Angew. Chem., Int. Ed. 2015, 54, 7275.

    26. [26]

      [17] Yuan, W. Z.; Yu, Z.; Lu, P.; Deng, C.; Lam, J. W. Y.; Wang, Z.; Chen, E.; Ma, Y.; Tang, B. Z. J. Mater. Chem. 2012, 22, 3323.

    27. [27]

      [18] Shen, X. Y.; Wang, Y. J.; Zhao, E. G.; Yuan, W. Z.; Liu, Y.; Lu, P.; Qin, A. J.; Ma, Y. G.; Sun, J. Z.; Tang, B. Z. J. Phys. Chem. C 2013, 117, 7334.

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    3. [3]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    4. [4]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    5. [5]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    6. [6]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    7. [7]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    8. [8]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    12. [12]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    17. [17]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    18. [18]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    19. [19]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return