Citation: Zhu Haoyun, Huang Wei, Huang Yuli, Wang Weizhi. Field Effect Transistors Characteristics Based on Blends of Si Nanowires and Poly(3-dodecylthiophene)[J]. Acta Chimica Sinica, ;2016, 74(5): 429-434. doi: 10.6023/A15120789 shu

Field Effect Transistors Characteristics Based on Blends of Si Nanowires and Poly(3-dodecylthiophene)

  • Corresponding author: Wang Weizhi, weizhiwang@fudan.edu.cn
  • Received Date: 21 December 2015

    Fund Project: the Innovation Program of Shanghai Municipal Education Commission 15ZZ002the National Natural Science Foundation of China 21274027the National Natural Science Foundation of China 20974022

Figures(5)

  • In order to enhance the field effect mobility of poly(3-dodecylthiophene), Si nanowires were added to the poly(3-dodecylthiophene) solution prior to film formation. The Si nanowires were produced by the electroless metal deposition method which involved the etching of silicon wafers in aqueous hydrofluoric acid and silver nitrate solution. The observation of scanning electron microscopy proved the uniform Si nanowires were obtained. The blend film was treated with thermal annealing to form ordered microcrystalline structure by self-organization. The annealing effect was measured by X-ray diffraction and atomic force microscopy which showed the enhancing diffraction peak and ordered atomic force microscopy images after annealing films. In the bottom gated field effect transistors, the blend film of Si nanowires and poly(3-dodecylthiophene) were formed on the SiO2/Si substrate by spin coating. The surface of the SiO2/Si substrate was coated with hexamethyldisilazane to produce a hydrophobic surface. The thickness of the Au source/drain electrodes was 100 nm. The annealing blend films worked as the semiconducting layer, 300 nm SiO2 worked as the gate dielectric and Si worked as the gate electrode. The charge carrier mobility of poly(3-dodecylthiophene) thin films was 0.015 cm2·V-1·s-1 and the charge carrier mobility of blend films was up to 0.68 cm2·V-1·s-1. The remarkable increase in the field effect mobility over that of pristine poly(3-dodecylthiophene) film is due to the high conductivity of Si nanowires which act as fast conducting channel between the crystalline regions of the poly(3-dodecylthiophene) film. To confirm and enhance the field effect transistors properties, we used the electric-double-layer transistor based on the blend films in which ion gel worked as the gate dielectric instead of SiO2. Here, Au foil worked as the gate electrode to form a top-gated field effect transistors. The charge carrier mobility of blend films was found to be relatively higher (6.2 cm2·V-1·s-1) when using ion gel as the dielectric layer.
  • 加载中
    1. [1]

      Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85.  doi: 10.1002/adfm.200390011

    2. [2]

      Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864.  doi: 10.1038/nmat1500

    3. [3]

      Jin, K. Y.; Lee, K.; Coates, N. E.; Daniel, M.; Nguyen, T.; Mark, D.; Heeger, A. J. Science 2007, 317, 222.  doi: 10.1126/science.1141711

    4. [4]

      He, M.; Han, W.; Ge, J.; Yu, W.; Yang, Y.; Qiu, F.; Lin, Z. Nanoscale 2011, 3, 3159.  doi: 10.1039/c1nr10293a

    5. [5]

      Pei, J.; Hao, Y.; Lü, H.; Sun, B.; Li, Y.; Wang, S. Acta Chim. Sinica 2014, 72(12), 1245.  doi: 10.6023/A14110783
       

    6. [6]

      Hao, Y.; Ma, J.; Sun, B.; Li, Y.; Ren, J. Acta Chim. Sinica 2010, 68(1), 33.
       

    7. [7]

      Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Jpn. Appl. Phys. 1991, 30, L1938.  doi: 10.1143/JJAP.30.L1938

    8. [8]

      Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Solid State Commun. 1991, 80, 605.  doi: 10.1016/0038-1098(91)90161-N

    9. [9]

      Mcquade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537.  doi: 10.1021/cr9801014

    10. [10]

      Facchetti, A. Chem. Mater. 2011, 23, 733.  doi: 10.1021/cm102419z

    11. [11]

      Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.  doi: 10.1021/cr100380z

    12. [12]

      Zhao, G. J.; He, Y. J.; Peng, B. Chin. J. Chem. 2012, 30, 19.  doi: 10.1002/cjoc.201100145

    13. [13]

      Scheinert, S.; Paasch, G.; Schrödner, M.; Roth, H. K.; Sensfuß, S.; Doll, T. J. Appl. Phys. 2002, 92, 330.  doi: 10.1063/1.1486253

    14. [14]

      Payerne, R.; Brun, M.; Rannou, P.; Baptist, R.; Grévin, B. Synth. Met. 2004, 146, 311.  doi: 10.1016/j.synthmet.2004.08.026

    15. [15]

      Tanaka, S.; Grévin, B.; Rannou, P.; Suzuki, H.; Mashiko, S. Thin Solid Films 2006, 499, 168.  doi: 10.1016/j.tsf.2005.07.250

    16. [16]

      Sauvé, G.; Javier, A. E.; Zhang, R.; Liu, J.; Sydlik, S. A.; Kowalewski, T.; McCullough, R. D. J. Mater. Chem. 2010, 20, 3195.  doi: 10.1039/c000172d

    17. [17]

      Babel, A.; Jenekhe, S. A. Synth. Met. 2005, 148, 169.  doi: 10.1016/j.synthmet.2004.09.033

    18. [18]

      Wang, G.; Swensen, J.; Moses, D.; Heeger, A. J. J. Appl. Phys. 2003, 93, 6137.  doi: 10.1063/1.1568526

    19. [19]

      Nagamatsu, S.; Takashima, W.; Kaneto, K.; Yoshida, Y.; Tanigaki, N.; Yase, K. Appl. Phys. Lett. 2004, 84, 4608.  doi: 10.1063/1.1751222

    20. [20]

      Yu, H. Z.; Peng, J. B. Acta Phys.-Chim. Sin. 2008, 24, 905.

    21. [21]

      Motaung, D. E.; Malgas, G. F.; Nkosi, S. S.; Mhlongo, G. H.; Mwakikunga, B. W.; Malwela, T.; Arendse, C. J.; Muller, T. F. G.; Cummings, F. R. J. Mater. Sci. 2013, 48, 1763.  doi: 10.1007/s10853-012-6937-6

    22. [22]

      Lu, G.; Tang, H.; Qu, Y.; Li, L.; Yang, X. Macromolecules 2007, 40, 6579.  doi: 10.1021/ma071135t

    23. [23]

      Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749.

    24. [24]

      Zen, A.; Saphiannikova, M.; Neher, D.; Asawapirom, U.; Scherf, U. Chem. Mater. 2005, 17, 781.  doi: 10.1021/cm040183e

    25. [25]

      Jiu, T.; Reiss, P.; Guillerez, S.; Bettignies, R. D.; Bailly, S.; Chandezon, F. IEEE J. Sel. Top. Quant. 2010, 16, 1619.  doi: 10.1109/JSTQE.2010.2044557

    26. [26]

      Kergoat, L.; Battaglini, N.; Miozzo, L.; Piro, B.; Pham, M. C.; Yassar, A.; Horowitz, G. Org. Electron. 2011, 12, 1253.  doi: 10.1016/j.orgel.2011.04.006

    27. [27]

      Park, Y. D.; Lim, J. A.; Jang, Y.; Hwang, M.; Lee, H. S.; Lee, D. H.; Lee, H.; Baek, J.; Cho, K. Org. Electron. 2008, 9, 317.  doi: 10.1016/j.orgel.2007.11.007

    28. [28]

      Tomioka, K.; Tanaka, T.; Hara, S.; Hiruma, K.; Fukui, T. IEEE J. Sel. Top. Quant. 2011, 17, 1112.  doi: 10.1109/JSTQE.2010.2068280

    29. [29]

      Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. Nature 2003, 425, 274.  doi: 10.1038/nature01996

    30. [30]

      Chang, S.; Chuang, V. P.; Boles, S. T.; Ross, C. A.; Thompson, C. V. Adv. Funct. Mater. 2009, 19, 2495.  doi: 10.1002/adfm.v19:15

    31. [31]

      Chen, Y. W.; Jiang, S. H.; Shao, B. X.; Wang, R. C. Chin. J. Inorg. Chem. 2007, 23, 915.

    32. [32]

      Yang, J. Y.; Lu, S. G.; Ding, H. Y.; Zhang, X. Y.; Kan, S. R. Chinese J. Inorg. Chem. 2010, 26, 1837.

    33. [33]

      Srivastava, S. K.; Kumar, D.; Schmitt, S. W.; Sood, K. N.; Christiansen, S. H.; Singh, P. K. Nanotechnology 2014, 25, 175601.  doi: 10.1088/0957-4484/25/17/175601

    34. [34]

      Peng, K.; Fang, H.; Hu, J.; Wu, Y.; Zhu, J.; Yan, Y.; Lee, S. Chem. Eur. J. 2006, 12, 7942.  doi: 10.1002/(ISSN)1521-3765

    35. [35]

      Liao, L.; Bai, J.; Lin, Y. C.; Qu, Y.; Huang, Y.; Duan, X. Adv. Mater. 2010, 22, 1941.  doi: 10.1002/adma.200904415

    36. [36]

      Lei, T.; Dou, J.; Cao, X.; Wang, J.; Pei, J. Adv. Mater. 2013, 25, 6589.  doi: 10.1002/adma.201302278

    37. [37]

      Fu, X. L.; Wang, C. L.; Li, R. J.; Dong, H. L.; Hu, W. P. Sci. China Chem. 2010, 6, 1225.

    38. [38]

      Lin, J.; Zhong, J.; Zhong, S.; Li, H.; Zhang, H.; Chen, W. Appl. Phys. Lett. 2013, 103, 63109.  doi: 10.1063/1.4818463

    39. [39]

      Tarabella, G.; Mahvash Mohammadi, F.; Coppedè, N.; Barbero, F.; Iannotta, S.; Santato, C.; Cicoira, F. Chem. Sci. 2013, 4, 1395.  doi: 10.1039/c2sc21740f

    40. [40]

      Huang, J. K.; Jiang, P.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. ACS Nano 2014, 8, 923.  doi: 10.1021/nn405719x

    41. [41]

      Yuan, H.; Shimotani, H.; Ye, J.; Yoon, S.; Aliah, H.; Tsukazaki, A.; Kawasaki, M.; Iwasa, Y. J. Am. Chem. Soc. 2010, 132, 18402.  doi: 10.1021/ja108912x

    42. [42]

      Zhang, J.; Han, Z.; Chen, M.; Yang, X.; Cao, W. J. Phys. Chem. Solids 2010, 71, 1316.  doi: 10.1016/j.jpcs.2010.05.014

    43. [43]

      Srivastava, S. K.; Kumar, D.; Schmitt, S. W.; Sood, K. N.; Christiansen, S. H.; Singh, P. K. Nanotechnology 2014, 25, 175601.  doi: 10.1088/0957-4484/25/17/175601

    44. [44]

      Huang, J.; Pu, J.; Hsu, C.; Chiu, M.; Juang, Z.; Chang, Y.; Chang, W.; Iwasa, Y.; Takenobu, T.; Li, L. ACS Nano 2014, 8, 923.  doi: 10.1021/nn405719x

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(0)
  • Abstract views(1015)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return