Citation: Yang Ning, Qiao Xiaolan, Fang Renren, Tao Jingwei, Hao Jian, Li Hongxiang. Syntheses and Properties of Five-Ring Fused Azo- and Thio-Aromatic Compounds Containing Imide Substituent[J]. Acta Chimica Sinica, ;2016, 74(4): 335-339. doi: 10.6023/A15120782 shu

Syntheses and Properties of Five-Ring Fused Azo- and Thio-Aromatic Compounds Containing Imide Substituent

  • Corresponding author: Hao Jian,  Li Hongxiang, 
  • Received Date: 18 December 2015

    Fund Project: 项目受国家自然科学基金(Nos. 51273212, 51303201)资助. (Nos. 51273212, 51303201)

  • Five-ring fused azo-and thio-aromatic compounds 1 and 2 containing imide substituent were designed and synthesized. 3,4-Dibromo-1-(2-ethylhexyl)-1H-pyrrole-2,5-dione reacted with lithium indyl and benzothiophene-3-boronic acid respectively, affording intermediates 3 and 4. Compound 3 was intramolecular cyclized in the presence of PdCl2 to give target compound 1. And compound 2 was prepared through intramolecular cyclization of intermediate 4 by means of photochemical ringclosure reaction and oxidation. The physicochemical properties of compounds 1 and 2 were thoroughly investigated with TGA, UV-vis absorption spectra and cyclic voltammetry. Experimental results showed the introduction of imide substituent not only increased the solubility of compounds 1 and 2, but also decreased their energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The HOMO/LUMO energy levels of compounds 1 and 2 are -5.58/-2.25 eV and -6.04/-3.51 eV respectively. Single crystals of compound 1 were grown through solvent evaporation method in the mixture of dichloromethane and petroleum ether. Single crystal structure revealed compound 1 has a planar conjugated core and forms dimmer in the crystal. Strong π-π intermolecular interactions exist in the dimmer, and hydrogen bonds (NH…O=C) are observed among dimmers. The charge carrier mobilities of compounds 1 and 2 were investigated through thin film transistors. The transistors were fabricated with top-contact/bottom-gate device configurations. And thin films were deposited in vacuum on octadecyltrichlorosilane (OTS)-modified Si/SiO2 substrates. Transistors performance of compound 2 displays obvious p-type performance with a mobility of 2.75×10-3 cm2·V-1·s-1. However, compound 1 exhibited no organic field-effect transistor (OFET) behavior. In order to understand the different device performances of compounds 1 and 2, their thin films were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD). AFM images showed that compound 1 formed continuous thin film with small size of microstructures, the existence of grain boundaries hindered the transport of charge carriers in the film. XRD curves revealed that compound 2 formed crystalline thin films. Though the continuity of 2 films was worse than that of 1, the larger size of microstructures and the crystalline property of the films facilitated the transport of charge carriers.
  • 加载中
    1. [1]

      [1] Arias, A. C.; MacKenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A. Chem. Rev. 2010, 110, 3.

    2. [2]

      [2] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.

    3. [3]

      [3] Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. J. Am. Chem. Soc. 2014, 136, 9477.

    4. [4]

      [4] Meager, I.; Nikolka, M.; Schroeder, B. C.; Nielsen, C. B.; Planells, M.; Bronstein, H.; McCulloch, I. Adv. Funct. Mater. 2014, 24, 7109.

    5. [5]

      [5] Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.

    6. [6]

      [6] Parry, A. V.; Lu, K.; Tate, D. J.; Urasinska-Wojcik, B.; Caras- Quintero, D.; Majewski, L. A.; Turner, M. L. Adv. Funct. Mater. 2014, 24, 6677.

    7. [7]

      [7] Mei, J.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. J. Am. Chem. Soc. 2013, 135, 6724.

    8. [8]

      [8] Jiang, Y.; Xu, H.; Zhao, N.; Peng, Q.; Shuai, Z. Acta Chim. Sinica 2014, 72, 201. (江昱倩, 徐海华, 赵妮, 彭谦, 帅志刚, 化学学报, 2014, 72, 201.)

    9. [9]

      [9] Zhu, M.; Luo, H.; Wang, L.; Yu, G.; Liu, Y. Acta Chim. Sinica 2012, 70, 1599. (朱敏亮, 罗皓, 王丽萍, 于贵, 刘云圻, 化学学报, 2012, 70, 1599.)

    10. [10]

      [10] Benight, S. J.; Wang, C.; Tok, J. B. H.; Bao, Z. Prog. Polym. Sci. 2013, 38, 1961.

    11. [11]

      [11] Baude, P. F.; Ender, D. A.; Haase, M. A.; Kelley, T. W.; Muyres, D. V.; Theiss, S. D. Appl. Phys. Lett. 2003, 82, 3964

    12. [12]

      [12] Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J. Appl. Phys. 2002, 92, 5259.

    13. [13]

      [13] Bheemireddy, S. R.; Ubaldo, P. C.; Rose, P. W.; Finke, A. D.; Zhuang, J.; Wang, L.; Plunkett, K. N. Angew. Chem. Int. Ed. 2015, 54, 15762.

    14. [14]

      [14] Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc. 2003, 771, 169.

    15. [15]

      [15] Maliakal, A.; Raghavachari, K.; Katz, H.; Chandross, E.; Siegrist, T. Chem. Mater. 2004, 16, 4980.

    16. [16]

      [16] Aubry, J. M.; Pierlot, C.; Rigaudy, J.; Schmidt, R. Acc. Chem. Res. 2003, 36, 668.

    17. [17]

      [17] Truong, M. A.; Nakano, K. J. Org. Chem. 2015, 80, 11566.

    18. [18]

      [18] Kobilka, B. M.; Dubrovskiy, A. V.; Ewan, M. D.; Tomlinson, A. L.; Larock, R. C.; Chaudhary, S.; Jeffries-El, M. Chem. Commun. 2012, 48, 8919.

    19. [19]

      [19] Schroeder, B. C.; Ashraf, R. S.; Thomas, S.; White, A. J.; Biniek, L.; Nielsen, C. B.; Anthopoulos, T. D. Chem. Commun. 2012, 48, 7699.

    20. [20]

      [20] Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. J. Am. Chem. Soc. 2005, 127, 614.

    21. [21]

      [21] Zhao, G.; Dong, H.; Zhao, H.; Jiang, L.; Zhang, X.; Tan, J.; Hu, W. J. Mater. Chem. 2012, 22, 4409.

    22. [22]

      [22] Li, Y.; Wu, Y.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849.

    23. [23]

      [23] Liang, Z.; Tang, Q.; Xu, J.; Miao, Q. Adv. Mater. 2011, 23, 1535.

    24. [24]

      [24] Xiao, K.; Liu, Y.; Qi, T.; Zhang, W.; Wang, F.; Gao, J.; Qiu, W.; Ma, Y.; Cui, G.; Chen, S.; Zhan, X.; Yu, G.; Qin, J.; Hu, W.; Zhu, D. J. Am. Chem. Soc. 2005, 127, 13281.

    25. [25]

      [25] Tang, M. L.; Okamoto, T.; Bao, Z. N. J. Am. Chem. Soc. 2006, 128, 16002.

    26. [26]

      [26] Li, R.; Jiang, L.; Meng, Q.; Gao, J.; Li, H.; Tang, Q.; Zhu, D. Adv. Mater. 2009, 21, 4492.

    27. [27]

      [27] Li, J.; Wang, M.; Ren, S.; Gao, X.; Hong, W.; Li, H.; Zhu, D. J. Mater. Chem. 2012, 22, 10496.

    28. [28]

      [28] Katsuta, S.; Miyagi, D.; Yamada, H.; Okujima, T.; Mori, S.; Nakayama, K. I.; Uno, H. Org. Lett. 2011, 13, 1454.

    29. [29]

      [29] Gao, P.; Beckmann, D.; Tsao, H. N.; Feng, X.; Enkelmann, V.; Pisula, W.; Müllen, K. Chem. Commun. 2008, 13, 1548.

    30. [30]

      [30] Oh, J. H.; Suraru, S. L.; Lee, W. Y.; Konemann, M.; Hoffken, H. W.; Roger, C.; Schmidt, R.; Chung, Y.; Chen, W. C.; Wurthner, F.; Bao, Z. N. Adv. Funct. Mater. 2010, 20, 2148.

    31. [31]

      [31] Lv, A.; Li, Y.; Yue, W.; Jiang, L.; Dong, H.; Zhao, G.; Meng, Q.; Jiang, W.; He, Y.; Li, Z.; Wang, Z.; Hu, W. Chem. Commun. 2012, 48, 5154.

    32. [32]

      [32] Wang, H.; Shi, Q.; Lin, Y.; Fan, H.; Cheng, P.; Zhan, X.; Zhu, D. Macromolecules 2011, 44, 4213.

    33. [33]

      [33] Zhang, G.; Shen, J.; Cheng, H.; Zhu, L.; Fang, L.; Luo, S.; Wang, P. G. J. Med. Chem. 2005, 48, 2600.

    34. [34]

      [34] Wang, S.; Hong, W.; Ren, S.; Li, J.; Wang, M.; Gao, X.; Li, H. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 4272.

  • 加载中
    1. [1]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    4. [4]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    5. [5]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    14. [14]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(1)
  • Abstract views(336)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return