Citation: Tian Ye, Ju Benzhi, Zhang Shufen. Synthesis and Self-Assembly Behavior of Temperature Responsive 2-Hydroxy-3-Isopropoxypropyl Hydroxyethyl Cellulose[J]. Acta Chimica Sinica, ;2016, 74(4): 369-374. doi: 10.6023/A15120755 shu

Synthesis and Self-Assembly Behavior of Temperature Responsive 2-Hydroxy-3-Isopropoxypropyl Hydroxyethyl Cellulose

  • Corresponding author: Ju Benzhi, 
  • Received Date: 3 December 2015

    Fund Project: 项目受国家自然科学基金委创新团队(No. 21421005) (No. 21421005)国家自然科学基金(No. 21376041) (No. 21376041)教育部创新团队(IRT-13R06)资助. (IRT-13R06)

  • Responsive polymers have attracted great interests in many application fields. Thermoresponsive polymers are especially appealing, and have been applied in biomedical and biotechnological fields. A thermoresponsive polymer, 2-hydroxy-3-isopropoxypropyl hydroxyethyl cellulose (HIPEC), was prepared by etherification reaction, which grafted isopropyl glycidyl ether (IPGE) onto hydroxyethyl cellulose (HEC). The HIPEC was characterized by 1H NMR, 13C NMR, and 2D HSQC NMR, and the molar substitution (MS) of HIPEC was determined by 1H NMR. The lower critical solution temperature (LCST) of HIPEC can be tuned from 17.0~43.0 ℃ by changing MS of hydrophobic groups from 1.21~2.88. The salt concentration has a significant influence on LCST, the experiment results indicated that the LCST of HIPEC decreased with increasing NaCl concentration. Amphiphilic, thermoresponsive polymers can form micelles in aqueous solution and encapsulate guest molecules. Fluorescence spectroscopy and dynamic light scattering (DLS) showed that HIPEC can assemble into micelles, and micelles diameter significantly increase with increasing temperature. It is indicated that the morphologies of the HIPEC micelles can be varied by changing temperature. The critical micelle concentrations (CMC) of HIPEC which were measured by fluorescence spectroscopy decreased with increasing of the MS of hydrophobic groups. Additionally, using Nile Red as a probe, fluorescence spectroscopy and confocal laser scan microscope (CLSM) were applied to the HIPEC aqueous solution to examine the encapsulation of Nile Red aqueous solutions of the HIPEC. The research results show that Nile Red can be encapsulated and stabilized in the hydrophobic core of HIPEC micelles. The fluorescence intensity of Nile Red increased with increasing of HIPEC concentration, and there is a sharp increase in the number of HIPEC micelles above CMC. Because the morphologies of HIPEC micelles were disrupted when the temperature reached the LCST, the Nile Red which was capsulated in HIPEC micelles can be slowly released from HIPEC micelles over a much longer period of time, and the release process can be controlled by changing temperature.
  • 加载中
    1. [1]

      [1] Obeid, R.; Maltseva, E.; Thuenemann, A. F.; Tanaka, F.; Winnik, F. M. Macromolecules 2009, 42, 2204.

    2. [2]

      [2] Hu, W.; Zhang, Y. Acta Chim. Sinica 2010, 68, 1855. (胡炜, 张颖, 化学学报, 2010, 68, 1855.)

    3. [3]

      [3] Sun, Y.; Ran, Z.; Tang, H.; Li, Y.; Song, W.; Ren, Q.; Yang, W.; Kong, J. Chin. J. Chem. 2013, 31, 787.

    4. [4]

      [4] Guner, P. T.; Demirel, A.L. J. Phys. Chem. B 2012, 116, 14510.

    5. [5]

      [5] Ding, Y.; Yu, Y.; Wei, J. Acta Chim. Sinica 2014, 72, 602. (丁妍春, 俞燕蕾, 韦嘉, 化学学报, 2014, 72, 602.)

    6. [6]

      [6] Yang, J.; Zhang, D.; Jiang, S.; Yang, J.; Nie, J. J. Colloid Interface Sci. 2010, 352, 405.

    7. [7]

      [7] Liu, W.; Wang, Y.; Li, Y.; Wang, F.; Yang, X.; Sun, T.; Du, J.; Wang, J. Chin. J. Chem. 2014, 32, 51.

    8. [8]

      [8] Hu, Y. F.; Darcos, V.; Monge, S.; Suming, L.; Yang, Z.; Feng, S. J. Mater. Chem. B 2014, 2, 2738.

    9. [9]

      [9] Qiu, Y.; Park, K. Adv. Drug Delivery Rev. 2012, 64, 49.

    10. [10]

      [10] Huang, C. H.; Wang, C. F.; Don, T. M.; Chiu, W. Y. Cellulose 2013, 20, 1791.

    11. [11]

      [11] Kang, H.; Liu, R.; Huang, Y. Acta Chim. Sinica 2013, 71, 114. (康宏亮, 刘瑞刚, 黄勇, 化学学报, 2013, 71, 114.)

    12. [12]

      [12] Ghimici, L.; Constantin, M. J. Hazardous Mater. 2011, 192, 1009.

    13. [13]

      [13] Liu, W. Y.; Liu, Y. J.; Hao, X. H.; Zeng, G. S.; Wang, W.; Liu, R. G.; Huang, Y. Carbohydr. Polym. 2012, 88, 290.

    14. [14]

      [14] Jing, Y.; Wu, P.Y. Cellulose 2013, 20, 67.

    15. [15]

      [15] Lu, X.; Hu, Z.; Schwartz, J. Macromolecules 2002, 35, 9164.

    16. [16]

      [16] Tian, Y.; Ju, B.; Zhang, S.; Duan, X.; Dong, D. J. Biomater. Sci. Polym. Ed. 2015, 26, 1100.

    17. [17]

      [17] Yuan, X.; Ju, B.; Zhang, S. Carbohydr. Polym. 2014, 114, 530.

    18. [18]

      [18] Sagle, L. B.; Zhang, Y.; Litosh, V. A.; Chen, X.; Cho, Y.; Cremer, P. S. J. Am. Chem. Soc. 2009, 131, 9304.

    19. [19]

      [19] Lutz, J. F.; Akdemir, O.; Hoth, A. J. Am. Chem. Soc. 2006, 128, 13046.

    20. [20]

      [20] Wei, H.; Cheng, C.; Chang, C.; Chen, W. Q.; Cheng, S.; Zhang, X. Z.; Zhuo, R. X. Langmuir 2008, 24, 4564.

    21. [21]

      [21] Ju, B.; Yan, D.; Zhang, S. Carbohydr. Polym. 2012, 87, 1404.

    22. [22]

      [22] Lin, C.; Zhao, J.; Song, L. Acta Chim. Sinica 2009, 67, 381. (林翠英, 赵剑曦, 宋利, 化学学报, 2009, 67, 381.)

    23. [23]

      [23] Kim, S. H.; Tan, J. P. K.; Nederberg, F.; Fukushima, K.; Yang, Y. Y.; Waymouth, R. M.; Hedrick, J. L. Macromolecules 2009, 42, 25.

    24. [24]

      [24] Park, J.; Moon, M.; Seo, M.; Choi, H.; Kim, S.Y. Macromolecules 2010, 43, 8304.

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    9. [9]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(0)
  • Abstract views(481)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return