Citation: Tian Ye, Ju Benzhi, Zhang Shufen. Synthesis and Self-Assembly Behavior of Temperature Responsive 2-Hydroxy-3-Isopropoxypropyl Hydroxyethyl Cellulose[J]. Acta Chimica Sinica, ;2016, 74(4): 369-374. doi: 10.6023/A15120755 shu

Synthesis and Self-Assembly Behavior of Temperature Responsive 2-Hydroxy-3-Isopropoxypropyl Hydroxyethyl Cellulose

  • Corresponding author: Ju Benzhi, 
  • Received Date: 3 December 2015

    Fund Project: 项目受国家自然科学基金委创新团队(No. 21421005) (No. 21421005)国家自然科学基金(No. 21376041) (No. 21376041)教育部创新团队(IRT-13R06)资助. (IRT-13R06)

  • Responsive polymers have attracted great interests in many application fields. Thermoresponsive polymers are especially appealing, and have been applied in biomedical and biotechnological fields. A thermoresponsive polymer, 2-hydroxy-3-isopropoxypropyl hydroxyethyl cellulose (HIPEC), was prepared by etherification reaction, which grafted isopropyl glycidyl ether (IPGE) onto hydroxyethyl cellulose (HEC). The HIPEC was characterized by 1H NMR, 13C NMR, and 2D HSQC NMR, and the molar substitution (MS) of HIPEC was determined by 1H NMR. The lower critical solution temperature (LCST) of HIPEC can be tuned from 17.0~43.0 ℃ by changing MS of hydrophobic groups from 1.21~2.88. The salt concentration has a significant influence on LCST, the experiment results indicated that the LCST of HIPEC decreased with increasing NaCl concentration. Amphiphilic, thermoresponsive polymers can form micelles in aqueous solution and encapsulate guest molecules. Fluorescence spectroscopy and dynamic light scattering (DLS) showed that HIPEC can assemble into micelles, and micelles diameter significantly increase with increasing temperature. It is indicated that the morphologies of the HIPEC micelles can be varied by changing temperature. The critical micelle concentrations (CMC) of HIPEC which were measured by fluorescence spectroscopy decreased with increasing of the MS of hydrophobic groups. Additionally, using Nile Red as a probe, fluorescence spectroscopy and confocal laser scan microscope (CLSM) were applied to the HIPEC aqueous solution to examine the encapsulation of Nile Red aqueous solutions of the HIPEC. The research results show that Nile Red can be encapsulated and stabilized in the hydrophobic core of HIPEC micelles. The fluorescence intensity of Nile Red increased with increasing of HIPEC concentration, and there is a sharp increase in the number of HIPEC micelles above CMC. Because the morphologies of HIPEC micelles were disrupted when the temperature reached the LCST, the Nile Red which was capsulated in HIPEC micelles can be slowly released from HIPEC micelles over a much longer period of time, and the release process can be controlled by changing temperature.
  • 加载中
    1. [1]

      [1] Obeid, R.; Maltseva, E.; Thuenemann, A. F.; Tanaka, F.; Winnik, F. M. Macromolecules 2009, 42, 2204.

    2. [2]

      [2] Hu, W.; Zhang, Y. Acta Chim. Sinica 2010, 68, 1855. (胡炜, 张颖, 化学学报, 2010, 68, 1855.)

    3. [3]

      [3] Sun, Y.; Ran, Z.; Tang, H.; Li, Y.; Song, W.; Ren, Q.; Yang, W.; Kong, J. Chin. J. Chem. 2013, 31, 787.

    4. [4]

      [4] Guner, P. T.; Demirel, A.L. J. Phys. Chem. B 2012, 116, 14510.

    5. [5]

      [5] Ding, Y.; Yu, Y.; Wei, J. Acta Chim. Sinica 2014, 72, 602. (丁妍春, 俞燕蕾, 韦嘉, 化学学报, 2014, 72, 602.)

    6. [6]

      [6] Yang, J.; Zhang, D.; Jiang, S.; Yang, J.; Nie, J. J. Colloid Interface Sci. 2010, 352, 405.

    7. [7]

      [7] Liu, W.; Wang, Y.; Li, Y.; Wang, F.; Yang, X.; Sun, T.; Du, J.; Wang, J. Chin. J. Chem. 2014, 32, 51.

    8. [8]

      [8] Hu, Y. F.; Darcos, V.; Monge, S.; Suming, L.; Yang, Z.; Feng, S. J. Mater. Chem. B 2014, 2, 2738.

    9. [9]

      [9] Qiu, Y.; Park, K. Adv. Drug Delivery Rev. 2012, 64, 49.

    10. [10]

      [10] Huang, C. H.; Wang, C. F.; Don, T. M.; Chiu, W. Y. Cellulose 2013, 20, 1791.

    11. [11]

      [11] Kang, H.; Liu, R.; Huang, Y. Acta Chim. Sinica 2013, 71, 114. (康宏亮, 刘瑞刚, 黄勇, 化学学报, 2013, 71, 114.)

    12. [12]

      [12] Ghimici, L.; Constantin, M. J. Hazardous Mater. 2011, 192, 1009.

    13. [13]

      [13] Liu, W. Y.; Liu, Y. J.; Hao, X. H.; Zeng, G. S.; Wang, W.; Liu, R. G.; Huang, Y. Carbohydr. Polym. 2012, 88, 290.

    14. [14]

      [14] Jing, Y.; Wu, P.Y. Cellulose 2013, 20, 67.

    15. [15]

      [15] Lu, X.; Hu, Z.; Schwartz, J. Macromolecules 2002, 35, 9164.

    16. [16]

      [16] Tian, Y.; Ju, B.; Zhang, S.; Duan, X.; Dong, D. J. Biomater. Sci. Polym. Ed. 2015, 26, 1100.

    17. [17]

      [17] Yuan, X.; Ju, B.; Zhang, S. Carbohydr. Polym. 2014, 114, 530.

    18. [18]

      [18] Sagle, L. B.; Zhang, Y.; Litosh, V. A.; Chen, X.; Cho, Y.; Cremer, P. S. J. Am. Chem. Soc. 2009, 131, 9304.

    19. [19]

      [19] Lutz, J. F.; Akdemir, O.; Hoth, A. J. Am. Chem. Soc. 2006, 128, 13046.

    20. [20]

      [20] Wei, H.; Cheng, C.; Chang, C.; Chen, W. Q.; Cheng, S.; Zhang, X. Z.; Zhuo, R. X. Langmuir 2008, 24, 4564.

    21. [21]

      [21] Ju, B.; Yan, D.; Zhang, S. Carbohydr. Polym. 2012, 87, 1404.

    22. [22]

      [22] Lin, C.; Zhao, J.; Song, L. Acta Chim. Sinica 2009, 67, 381. (林翠英, 赵剑曦, 宋利, 化学学报, 2009, 67, 381.)

    23. [23]

      [23] Kim, S. H.; Tan, J. P. K.; Nederberg, F.; Fukushima, K.; Yang, Y. Y.; Waymouth, R. M.; Hedrick, J. L. Macromolecules 2009, 42, 25.

    24. [24]

      [24] Park, J.; Moon, M.; Seo, M.; Choi, H.; Kim, S.Y. Macromolecules 2010, 43, 8304.

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    12. [12]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    13. [13]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    14. [14]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(0)
  • Abstract views(508)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return