Citation: Cui Xianghong, Chen Huaiyin, Yang Tao. Research Progress on the Preparation and Application of Nano-sized Molybdenum Disulfide[J]. Acta Chimica Sinica, ;2016, 74(5): 392-400. doi: 10.6023/A15110712 shu

Research Progress on the Preparation and Application of Nano-sized Molybdenum Disulfide

  • Corresponding author: Yang Tao, taoyang@qust.edu.cn
  • Received Date: 12 November 2015

    Fund Project: the National Natural Science Foundation of China 41476083the National Natural Science Foundation of China 21275084

Figures(10)

  • In recent years, molybdenum disulfide (MoS2), as a material that shows analogous structure to graphene, has attracted more and more attentions of scientists. Due to its layered structure, special electronic and electrochemical properties, large specific surface area and the potential of surface modification, nano-sized MoS2 is widely used in many fields. In this review, the authors introduce several preparation methods of nano-sized MoS2, mainly including micromechanical cleavage, liquid exfoliation, lithium intercalation, hydrothermal reaction, vapor deposition and thermal decomposition. All these methods possess their own advantages, but at present, there is no good ways to achieve the large-scale production of large-area MoS2 nanosheets with controllable layer number or MoS2 nano-architectures with controllable shape. Apart from the preparation methods, the authors mainly introduce the research progress on the application of nano-sized MoS2 in the fields of optoelectronic devices, catalysis, sensing, energy storage and conversion, and stress the research status of the application in the aspects of electrochemistry and biosensing analysis. In addition, the development direction of nano-sized MoS2 in the future is also been pointed out. According to the present researches, nano-sized MoS2 possesses enormous potential in the fields of energy storage and conversion, sensing analysis, and devices, etc., and it may become a kind of multi-functional material with excellent performance in the wake of graphene.
  • 加载中
    1. [1]

      Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 2010, 10, 1271.  doi: 10.1021/nl903868w

    2. [2]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nature Nanotech. 2011, 6, 147.  doi: 10.1038/nnano.2010.279

    3. [3]

      Zhou, K. Q.; Jiang, S. H.; Bao, C. L.; Song, L.; Wang, B. B.; Tang, G.; Hu, Y.; Gui, Z. RSC Adv. 2012, 2, 11695.  doi: 10.1039/c2ra21719h

    4. [4]

      Hu, K.-H.; Wo, H.-Z.; Han, X.-Z.; Hu, X.-G. Mod. Chem. Ind. 2003, 23, 14.

    5. [5]

      Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G. Angew. Chem., Int. Ed. 2011, 50, 11093.  doi: 10.1002/anie.v50.47

    6. [6]

      Shah, P. B.; Amani, M.; Chin, M. L.; O'Regan, T. P.; Crowne, F. J.; Dubey, M. Solid State Electron. 2014, 91, 87.  doi: 10.1016/j.sse.2013.10.010

    7. [7]

      Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Small 2012, 8, 63.  doi: 10.1002/smll.201101016

    8. [8]

      Li, Y. G.; Li, Y. L.; Araujo, C. M.; Luo, W.; Ahuja, R. Catal. Sci. Technol. 2013, 3, 2214.  doi: 10.1039/c3cy00207a

    9. [9]

      Yang, L. C.; Wang, S. N.; Mao, J. J.; Deng, J. W.; Gao, Q. S.; Tang, Y.; Schmidt, O. G. Adv. Mater. 2013, 25, 1180.  doi: 10.1002/adma.201203999

    10. [10]

      Shen, C.; Zhang, J.; Shi, D.-X.; Zhang, G.-Y. Acta Chim. Sinica 2015, 73, 954.  doi: 10.6023/A15030220
       

    11. [11]

      Ge, J.; Ou, E. C.; Yu, R. Q.; Chu, X. J. Mater. Chem. B 2014, 2, 625.  doi: 10.1039/C3TB21570A

    12. [12]

      Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. PNAS 2005, 102, 10451.  doi: 10.1073/pnas.0502848102

    13. [13]

      Lee, C. G.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS Nano 2010, 4, 2695.  doi: 10.1021/nn1003937

    14. [14]

      Yin, Z. Y.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. ACS Nano 2012, 6, 74.  doi: 10.1021/nn2024557

    15. [15]

      Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.  doi: 10.1126/science.1194975

    16. [16]

      Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.; Zhang, H. L. Angew. Chem. Int. Ed. 2011, 50, 10839.  doi: 10.1002/anie.v50.46

    17. [17]

      Matte, H.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R Angew. Chem. Int. Ed. 2010, 49, 4059.  doi: 10.1002/anie.201000009

    18. [18]

      Li, X. L.; Li, Y. D. J. Phys. Chem. B 2004, 108, 13893.  doi: 10.1021/jp0367575

    19. [19]

      Ma, L.; Chen, W. X.; Li, H.; Xu, Z. D. Mater. Chem. Phys. 2009, 116, 400.  doi: 10.1016/j.matchemphys.2009.04.007

    20. [20]

      Nath, M.; Govindaraj, A.; Rao, C. N. R. Adv. Mater. 2001, 13, 283.  doi: 10.1002/(ISSN)1521-4095

    21. [21]

      Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H.; Lai, C. S.; Li, L. J. Nano Lett. 2012, 12, 1538.  doi: 10.1021/nl2043612

    22. [22]

      Qin, X. P.; Ke, P. L.; Wang, A. Y.; Kim, K. H. Surf. Coat. Technol. 2013, 228, 275.  doi: 10.1016/j.surfcoat.2013.04.040

    23. [23]

      Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.; Lin, T. W. Adv. Mater. 2012, 24, 2320.  doi: 10.1002/adma.201104798

    24. [24]

      Liu, H.; Si, M. W.; Najmaei, S.; Neal, A. T.; Du, Y. C.; Ajayan, P. M.; Lou, J.; Ye, P. D. Nano Lett. 2013, 13, 2640.  doi: 10.1021/nl400778q

    25. [25]

      Li, X.; Li, X. M.; Zang, X. B.; Zhu, M.; He, Y. Y.; Wang, K. L.; Xie, D.; Zhu, H. W. Nanoscale 2015, 7, 8398.  doi: 10.1039/C5NR00904A

    26. [26]

      Xu, G.-C.; Lu, Z.-X.; Zhang, Q.; Qiu, H.-L.; Jiao, L.-Y. Acta Chim. Sinica 2015, 73, 895.  doi: 10.6023/A15030203
       

    27. [27]

      Radisavljevic, B.; Whitwick, M. B.; Kis, A. ACS Nano 2011, 5, 9934.  doi: 10.1021/nn203715c

    28. [28]

      Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Nature Mater. 2014, 13, 1128.  doi: 10.1038/nmat4080

    29. [29]

      Wang, X.; Song, L.; Chen, L.; Song, H.-H.; Zhang, Y.-P. Adv. Mater. Chem. 2014, 2, 49.  doi: 10.12677/AMC.2014.24008

    30. [30]

      Samnakay, R.; Jiang, C.; Rumyantsev, S. L.; Shur, M. S.; Balandin, A. A. Appl. Phys. Lett. 2015, 106, 023115.  doi: 10.1063/1.4905694

    31. [31]

      Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 7296.  doi: 10.1021/ja201269b

    32. [32]

      Wang, T. Y.; Liu, L.; Zhu, Z. W.; Papakonstantinou, P.; Hu, J. B.; Liu, H. Y.; Li, M. X. Energy Environ. Sci. 2013, 6, 625.  doi: 10.1039/C2EE23513G

    33. [33]

      Shi, J.-P.; Ma, D.-L.; Zhang, Y.-F.; Liu, Z.-F. Acta Chim. Sinica 2015, 73, 877.  doi: 10.6023/A15030157
       

    34. [34]

      Zhou, W. J.; Yin, Z. Y.; Du, Y. P.; Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, H.; Wang, J. Y.; Zhang, H. Small 2013, 9, 140.  doi: 10.1002/smll.v9.1

    35. [35]

      Wang, T. Y.; Gao, D. L.; Zhuo, J. Q.; Zhu, Z. W.; Papakonstantinou, P.; Li, Y.; Li, M. X. Chem. Eur. J. 2013, 19, 11939.  doi: 10.1002/chem.201301406

    36. [36]

      Wang, Y.; Zhang, L.-M.; Hu, T.-J. Acta Chim. Sinica 2015, 73, 316.  doi: 10.6023/A14110787
       

    37. [37]

      Chen, J.; Li, S. L.; Xu, Q.; Tanaka, K. Chem. Commun. 2002, 1722.

    38. [38]

      Chang, K.; Chen, W. X. Chem. Commun. 2011, 47, 4252.  doi: 10.1039/c1cc10631g

    39. [39]

      Hu, L. R.; Ren, Y. M.; Yang, H. X.; Xu, Q. ACS Appl. Mater. Interfaces 2014, 6, 14644.  doi: 10.1021/am503995s

    40. [40]

      Zhu, J. X.; Sun, W. P.; Yang, D.; Zhang, Y.; Hoon, H. H.; Zhang, H.; Yan, Q. Y. Small 2015, 11, 4123.  doi: 10.1002/smll.v11.33

    41. [41]

      Ma, G. F.; Peng, H.; Mu, J. J.; Huang, H. H.; Zhou, X. Z.; Lei, Z. Q. J. Power Sources 2013, 229, 72.  doi: 10.1016/j.jpowsour.2012.11.088

    42. [42]

      Da Silveira Firmiano, E. G.; Rabelo, A. C.; Dalmaschio, C. J.; Pinheiro, A. N.; Pereira, E. C.; Schreiner, W. H.; Leite, E. R. Adv. Energy Mater. 2014, 4, 1301380.

    43. [43]

      Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. J. Am. Chem. Soc. 2013, 135, 5998.  doi: 10.1021/ja4019572

    44. [44]

      Wang, X. X.; Nan, F. X.; Zhao, J. L.; Yang, T.; Ge, T.; Jiao, K. Biosens. Bioelectron. 2015, 64, 386.  doi: 10.1016/j.bios.2014.09.030

    45. [45]

      Wang, T. Y.; Zhu, R. Z.; Zhuo, J. Q.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. Anal. Chem. 2014, 86, 12064.  doi: 10.1021/ac5027786

    46. [46]

      Huang, K. J.; Liu, Y. J.; Wang, H. B.; Wang, Y. Y.; Liu, Y. M. Biosens. Bioelectron. 2014, 55, 195.  doi: 10.1016/j.bios.2013.11.061

    47. [47]

      Cao, X. Y. Microchim. Acta 2014, 181, 1133.  doi: 10.1007/s00604-014-1301-y

    48. [48]

      Wang, L.; Wang, Y.; Wong, J. I.; Palacios, T.; Kong, J.; Yang, H. Y. Small 2014, 10, 1101.  doi: 10.1002/smll.201302081

    49. [49]

      Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Sci. Rep. 2014, 4, 7352.  doi: 10.1038/srep07352

    50. [50]

      Kong, R. M.; Ding, L.; Wang, Z. J.; You, J. M.; Qu, F. L. Anal. Bioanal. Chem. 2015, 407, 369.  doi: 10.1007/s00216-014-8267-9

    51. [51]

      Wang, X.; Chu, C. C.; Shen, L.; Deng, W. P.; Yan, M.; Ge, S. G.; Yu, J. H.; Song, X. R. Sensor. Actuat. B 2015, 206, 30.  doi: 10.1016/j.snb.2014.09.028

    52. [52]

      Liu, H.; Su, X.; Duan, C. Y.; Dong, X. N.; Zhu, Z. F. Mater. Lett. 2014, 122, 182.  doi: 10.1016/j.matlet.2014.02.047

    53. [53]

      Wang, T. Y.; Zhu, H. C.; Zhuo, J. Q.; Zhu, Z. W.; Papakonstantinou, P.; Lubarsky, G.; Lin, J.; Li, M. X. Anal. Chem. 2013, 85, 10289.  doi: 10.1021/ac402114c

    54. [54]

      Wu, S. X.; Zeng, Z. Y.; He, Q. Y.; Wang, Z. J.; Wang, S. J.; Du, Y. P.; Yin, Z. Y.; Sun, X. P.; Chen, W.; Zhang, H. Small 2012, 8, 2264.  doi: 10.1002/smll.201200044

    55. [55]

      Su, S.; Sun, H. F.; Xu, F.; Yuwen, L. H.; Fan, C. H.; Wang, L. H. Microchim. Acta 2014, 181, 1497.  doi: 10.1007/s00604-014-1178-9

    56. [56]

      Huang, K. J.; Zhang, J. Z.; Liu, Y. J.; Wang, L. L. Sensor. Actuat. B 2014, 194, 303.  doi: 10.1016/j.snb.2013.12.106

    57. [57]

      Yang, R. R.; Zhao, J. L.; Chen, M. J.; Yang, T.; Luo, S. Z.; Jiao, K. Talanta 2015, 131, 619.  doi: 10.1016/j.talanta.2014.08.035

    58. [58]

      Yang, T.; Yang, R. R.; Chen, H. Y.; Nan, F. X.; Ge, T.; Jiao, K. ACS Appl. Mater. Interfaces 2015, 7, 2867.  doi: 10.1021/am5081716

    59. [59]

      Yang, T.; Chen, H. Y.; Yang, R. R.; Jiang, Y. H.; Li, W. H.; Jiao, K. Microchim. Acta 2015, 182, 2623.  doi: 10.1007/s00604-015-1598-1

    60. [60]

      Yang, T.; Chen, M. J.; Nan, F. X.; Chen, L. H.; Luo, X. L.; Jiao, K. J. Mater. Chem. B 2015, 3, 4884.

    61. [61]

      Huang, K. J.; Wang, L.; Li, J.; Liu, Y. M. Sensor. Actuat. B 2013, 178, 671.  doi: 10.1016/j.snb.2013.01.028

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    14. [14]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(0)
  • Abstract views(2678)
  • HTML views(515)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return