Citation: Qing Xiangdong, Wu Hailong, Gu Huiwen, Yin Xiaoli, Wen Jin, Shen Xiangzhong, Yu Ruqin. Removal of Background Drift Nonlinear Interference in 3-D Spectral Arrays for Multi-Way Calibration Using Trilinear Decomposition Methods[J]. Acta Chimica Sinica, ;2016, 74(3): 277-284. doi: 10.6023/A15110704 shu

Removal of Background Drift Nonlinear Interference in 3-D Spectral Arrays for Multi-Way Calibration Using Trilinear Decomposition Methods

  • Corresponding author: Wu Hailong, hlwu@hnu.edu.cn
  • Received Date: 9 November 2015

    Fund Project: the High-level Scientific Research Foundation for the Introduction of Talent of Hunan University of Humanities, Science and Technology 8250139the National Natural Science Foundation of China 21221003, 21575039

Figures(8)

  • Fluorescent and phosphorescent techniques have been widely used in the fields of food, biology, environment, chemistry, medicine, life science and so on. However, the spectral background drift often occurs in the spectral excitation dimension, creating the need for new methods to process this phenomenon. There are many different factors which may lead to this common phenomenon, such as the changes in background noise of instrument or temperature. In the work, a new technique for removal of background drift in three-dimensional spectral arrays is proposed. The basic idea is to perform trilinear decomposition based on the alternating trilinear decomposition (ATLD) algorithm on the instrumental response data. In model building, the background drift is modeled as an additional component or factor as well as the analytes of interest and the interferents. As the optimum number of factors (N) is provided by the core consistency diagnostic (CORCONDIA), the ATLD algorithm is applied to decompose the raw data (Xraw) with the factor number of N, then three profile matrices A, B and C can be obtained. Vectors an, bn and cn that representing the signal of the background drift can be extracted from these matrices to construct a 3-D background drift data array (Xdrift ). After subtracting the Xdrift from the Xraw, the background drift is removed, leaving the new data on a flat baseline. Two simulated data sets were firstly employed to demonstrate the reasonability of the new method. The same and different levels of background drifts along the excitation dimension are added into the two simulated data sets, respectively. Then, it is successfully used to analyze two experimental data sets in which significant background drift are present. These results highlight the fact that this technique yields a good removal of background drift. In addition, the good result is obtained by secondary removal for serious background drift. The proposed method can be viewed as a good spectral pretreatment technique.
  • 加载中
    1. [1]

      Wu, H. L.; Nie, J. F.; Yu, Y. J.; Yu, R. Q. Anal. Chim. Acta 2009, 650, 131. 

    2. [2]

       

    3. [3]

      Ni, Y. N.; Zhong, X. Z. Chin. Chem. Lett. 2007, 18, 569. 

    4. [4]

       

    5. [5]

       

    6. [6]

    7. [7]

       

    8. [8]

       

    9. [9]

      Harshman, R. A. UCLA Working Papers in Phonetics 1970, 16, 1.

    10. [10]

      Wu, H. L.; Shibukawa, M.; Oguma, K. J. Chemom. 1998, 12, 1. 

    11. [11]

      Chen, Z. P.; Wu, H. L.; Jiang, J. H.; Li, Y.; Yu, R. Q. Chemom. Intell. Lab. Syst. 2000, 52, 75. 

    12. [12]

      Xia, A. L.; Wu, H. L.; Fang, D. M.; Ding, Y. J.; Hu, L. Q.; Yu, R. Q. J. Chemom. 2005, 19, 65. 

    13. [13]

      Jiang, J. H.; Wu, H. L.; Chen, Z. P.; Yu, R. Q. Anal. Chem. 1999, 71, 4254. 

    14. [14]

      Jiang, J. H.; Wu, H. L.; Li, Y.; Yu, R. Q. J. Chemom. 1999, 13, 557. 

    15. [15]

      Escandar, G. M.; Faber, N. M.; Goicoechea, H. C.; Muñoz, de la Peña, A.; Olivieri, A. C.; Poppi, R. J. Trends Anal. Chem. 2007, 26, 752. 

    16. [16]

      Moore, A. W.; Jorgenson, J. W. Anal. Chem. 1993, 65, 188. 

    17. [17]

      Andrew, K. N.; Rutan, S. C.; Worsfold, P. J. Anal. Chim. Acta 1999, 388, 315. 

    18. [18]

      Boelens, H. F. M.; Dijkstra, R. J.; Eilers, P. H. C.; Fitzpatrick, F.; Westerhuis, J. J. Chromatogr. A 2004, 1057, 21. 

    19. [19]

      Zhang, Y.; Wu, H. L.; Xia, A. L.; Hu, L. H.; Zou, H. F.; Yu, R. Q. J. Chromatogr. A 2007, 1167, 178. 

    20. [20]

      Vogt, F.; Rebstock, K.; Tacke, M. Chemom. Intell. Lab. Syst. 2000, 50, 175. 

    21. [21]

      Hermans, A.; Keithley, R. B.; Kita, J. M.; Sombers, L. A.; Wightman, R. M. Anal. Chem. 2008, 80, 4040. 

    22. [22]

      Furusjö, E.; Danielsson, L. G. Chemom. Intell. Lab. Syst. 2000, 50, 63. 

    23. [23]

      Zhang, Z. M.; Chen, S.; Liang, Y. Z.; Liu, Z. X.; Zhang, Q. M.; Ding, L. X. J. Raman Spectrosc. 2010, 4, 659.

    24. [24]

      Bro, R.; Kiers, H. A. L. J. Chemom. 2003, 17, 274. 

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    5. [5]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    6. [6]

      Sijiang Hu Hongqiang Wang Jiming Peng Fenghua Zheng Qichang Pan Kui Liu Qingyu Li . Ideological and Political Education Practice of the Comprehensive Applied Chemistry Laboratory for Emerging Engineering Education. University Chemistry, 2024, 39(2): 214-220. doi: 10.3866/PKU.DXHX202307019

    7. [7]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    8. [8]

      Zhihui Wen Zhanheng Feng Xue Qi Xiaohang Qiu . Exploration and Practice in Inorganic Chemistry Laboratory Management under Broad-based Admission Programs. University Chemistry, 2024, 39(6): 181-188. doi: 10.3866/PKU.DXHX202310081

    9. [9]

      Xiaohang Qiu Yang Liu Fei Ding Jie Han Yijun Li . Construction of a Demonstration Center for Experimental Chemistry Education in the New Era. University Chemistry, 2024, 39(7): 26-31. doi: 10.12461/PKU.DXHX202404112

    10. [10]

      Haorui Gu Ning Li Zhanxiang Liu Xufeng Lin . Construction and Development of Chemistry Experimental Teaching Center under the Background of the “101 Plan”. University Chemistry, 2024, 39(7): 110-115. doi: 10.12461/PKU.DXHX202405022

    11. [11]

      Jinxin Guo Shuyong Zhang Rongxiu Zhu Zhenghu Xu . Exploration and Practice of University Chemistry Laboratory Course Reform in the Context of Emerging Medical Education. University Chemistry, 2024, 39(8): 16-22. doi: 10.3866/PKU.DXHX202311062

    12. [12]

      Yuanhong Zhang Lin Jiang Yanfang Wang Chengxia Miao Lili Zhang Yijing Li Junling Duan Juying Hou Qin Hou Fuxian Wan . Exploration and Practice of Teaching Reform in Inorganic Chemistry within the New Agricultural Sciences Framework. University Chemistry, 2024, 39(8): 72-77. doi: 10.3866/PKU.DXHX202312060

    13. [13]

      Xia Gao Huibin Pan Chengfang Qiao Fengying Chen Jun Wang Qian Liu . Teaching Reform and Practice of Chemistry Comprehensive Experiment Course under Professional Certification Background. University Chemistry, 2024, 39(10): 195-202. doi: 10.12461/PKU.DXHX202401078

    14. [14]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Liqiang Lu Qin Shuai Xike Tian Chenggang Zhou Guo'e Cheng Bo han Yulun Nie Hongtao Zheng Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015

    19. [19]

      Xiaoyan Wang Yan Qi Lin Tang Shuwen Wang Huiling Wen Hongtao Gao . Improvement of the Quality Construction of Basic Chemistry Experimental Teaching Center under the Background of Education Digitization. University Chemistry, 2024, 39(7): 40-48. doi: 10.12461/PKU.DXHX202404124

    20. [20]

      Heng Zhang Gang Liu Zhenghu Xu Ying Ma . Construction and Practice of Comprehensive Open and Innovative Chemistry Experimental Teaching System and Platform in the Context of Multidisciplinary Integration. University Chemistry, 2024, 39(7): 56-63. doi: 10.12461/PKU.DXHX202405001

Metrics
  • PDF Downloads(0)
  • Abstract views(1755)
  • HTML views(397)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return