Citation: Xu Xin, Peng Sikan, Zhang Jin, Lu Shanfu, Xiang Yan. Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell Ⅱ: Optimization of Cathode Catalyst Layer[J]. Acta Chimica Sinica, ;2016, 74(3): 271-276. doi: 10.6023/A15100687 shu

Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell Ⅱ: Optimization of Cathode Catalyst Layer

  • Corresponding author: Lu Shanfu, lusf@buaa.edu.cn Xiang Yan, xiangy@buaa.edu.cn
  • Received Date: 31 October 2015

    Fund Project: National High Technology Research and Development Program of China 2013AA031902Natural Science Foundation of Beijing 2132051the National Natural Science Foundation of China U1137602

Figures(6)

  • Bipolar fuel cell (BPFC) is a new kind polymer electrolyte membrane fuel cell (PEMFC) with acidic-alkaline bipolar interface formed by acidic and alkaline polyelectrolyte both used in one cell. BPFC has shown some novel characterizations: (1) water generated at the bipolar interface would provide the possibility to devise self-humidification over the entire cell, which would simplify the water manager system; (2) alkaline cathode with facilitated electrokinetics allows for the use of lower catalyst loading or non-noble catalysts, such as silver and nickel. In our previous work, the effect of bipolar membrane electrode configuration on the cell output performance was evaluated and the optimal configuration was achieved. The BPFC with optimal membrane electrode configuration has been operated under completely self-humidifying conditions for prolonged periods successfully. However, there exists a big gap with the cell performance between BPFC and the state-of-art PEMFC. In order to improve the fuel cell performance, optimization of the membrane electrode configurations and further advances in fabricating bipolar interface had been conducted in our previous work. Another issue that affects the performance of the fuel cell is the structure and composition of the catalyst layer. Since the oxygen reduction reaction (ORR) at cathode influenced the fuel cell performance a lot, the improvement of electrode was mainly focused on the cathode catalyst layer. In the present work, thin hydrophilic electrode and thick hydrophobic electrode were used as cathode for BPFC. The influence of ionomer binder, quaternary ammonium polysulfone (QAPSF) in thin hydrophilic electrode and polytetrafluoroethylene (PTFE) in thick hydrophobic electrode, concentration on BPFC performance was studied. The results indicated that the optimal content of QAPSF in thin hydrophilic cathode was 20 wt%, and the peak power density of BPFC reached to 186.1 mW/cm2 at 25 ℃ without humidification. While the PTFE in the thick hydrophobic cathode was also 20 wt% with a peak power density of 461.5 mW/cm2 at 40 ℃ without humidification. Due to the high demand of alkaline cathode for drainage, the thick hydrophobic electrode behaved better than thin hydrophilic electrode in BPFC.
  • 加载中
    1. [1]

      Peng, S.; Xu, X.; Lu, S.; Sui, P.-C.; Djilali, N.; Xiang, Y. J. Power Sources 2015, 299, 273. 

    2. [2]

      Ünlü, M.; Zhou, J.; Kohl, P. A. J. Phys. Chem. C 2009, 113(26), 11416. 

    3. [3]

      Pan, J.; Lu, S.; Li, Y.; Huang, A.; Zhuang, L.; Lu, J. Adv. Funct. Mater. 2009, 20, 312.

    4. [4]

      Lu, S. F.; Pan, J.; Huang, A. B.; Zhuang, L.; Lu, J. T. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(52), 20611. 

    5. [5]

      Ünlü, M.; Zhou, J.; Kohl, P. A. Angew. Chem., Int. Ed. 2010, 49(7), 1299. 

    6. [6]

      Ünlü, M.; Zhou, J.; Kohl, P. A. Fuel Cells 2010, 10(1), 54.

    7. [7]

       

    8. [8]

    9. [9]

      Lin, R.; Zhao, T.; Zhang, H.; Cao, C.; Li, B.; Ma, J. Chin. J. Mech. Eng. 2012, 25, 1171.

    10. [10]

      Peng, S.; Lu, S.; Zhang, J.; Sui, P.-C.; Xiang, Y. Phys. Chem. Chem. Phys. 2013, 15(27), 11217. 

  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(1109)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return