Citation: Qi Lihua, Cai Wensheng, Shao Xueguang. Effect of Temperature on Near-infrared Spectra of n-Alkanes[J]. Acta Chimica Sinica, ;2015, 74(2): 172-178. doi: 10.6023/A15100664 shu

Effect of Temperature on Near-infrared Spectra of n-Alkanes

  • Corresponding author: Shao Xueguang, xshao@nankai.edu.cn
  • Received Date: 17 October 2015

    Fund Project: MOE Innovation Team IRT13022the National Natural Science Foundation of China No. 21475068

Figures(6)

  • Effect of temperature on near-infrared (NIR) spectra has been studied and applied to structural and quantitative analyses. To investigate the effect of temperature on NIR spectra of alkyl organic system, n-alkanes were studied in this work. NIR spectra of pure n-alkanes (hexane to decane), binary (hexane and octane) and ternary (octane, nonane and decane) mixtures were measured. In the experiments, temperature was controlled to change from 60 to 20℃ with a step of ca. 5℃. Comparing the spectra at different temperatures, only a little difference in peak intensity of some bands can be found. Therefore, alternating trilinear decomposition (ATLD) algorithm was adopted to analyze the three-order data matrix. The results show that two spectral loadings are obtained because the influence of temperature on the spectra of terminal ethyl (C2H5) groups differs from that of mid-chain methylene (CH2) groups. Furthermore, the temperature scores of CH2 and C2H5 groups decrease linearly with temperature, implying that the temperature effect can be quantitatively described by a quantitative spectra-temperature relationship (QSTR) model. The QSTR model provides an efficient way to predict the temperature of n-alkane solutions. Good linearity also exists between sample scores and carbon number or the relative content of CH2 and C2H5 groups in the molecules of the n-alkanes. Linear models between the two scores and the relative content of CH2 and C2H5 groups are obtained, respectively, using the least square fitting of the score and the relative contents. The model can be used for prediction of the relative content of CH2 and C2H5 groups in mixtures, which can further be used to estimate the composition of the mixtures. Furthermore, the relationship between the scores and the carbon atom numbers is modeled using multivariate linear regression (MLR). The composition of n-alkane mixtures can also be estimated through the predicted carbon number using the MLR model. These models are validated by binary and ternary mixtures of the n-alkanes. It was indicated that the relative contents of CH2 and C2H5 groups or the carbon atom number can be predicted using the models. Therefore, a new way for quantitative estimation of the composition in n-alkane mixtures was developed using the temperature effect of the near-infrared spectra.
  • 加载中
    1. [1]

    2. [2]

      Du, W.; Chen, Z.-P.; Zhong, L.-J.; Wang, S.-X.; Yu, R.-Q.; Nordon, A.; Littlejohn, D.; Holden, M. Anal. Chim. Acta 2011, 690, 64. 

    3. [3]

    4. [4]

      Zhang, X.; Du, Y.-P.; Tong, P.-J.; Li, W.; Iqbal, J.; Wu, T.; Hu, H.-L.; Zhang, W.-B. Chemom. Intell. Lab. Syst. 2014, 134, 58.

    5. [5]

       

    6. [6]

       

    7. [7]

      Wlufer, F.; Kok, W. T.; Smilde, A. K. Anal. Chem. 1998, 70, 1761. 

    8. [8]

      Ozaki, Y.; Liu, Y.; Noda, I. Appl. Spectrosc. 1997, 51, 526. 

    9. [9]

      Liu, Y.-L.; Ozaki, Y. J. Phys. Chem. 1996, 100, 7326. 

    10. [10]

      Wuttke, R.; Hofmann, H.; Nettels, D.; Borgia, M. B.; Mittal, J.; Best, R. B.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 5213. 

    11. [11]

      Liu, Z.-G.; Zhao, L.; Zhou, Z.; Sun, T.-Z.; Zu, Y.-G. Scanning 2012, 34, 302.

    12. [12]

      Jing, Y.; Wu, P.-Y. Cellulose 2013, 20, 67.

    13. [13]

      Segtnan, V. H.; Sasic, S.; Isaksson, T.; Ozaki, Y. Anal. Chem. 2001, 73, 3153.

    14. [14]

      Sasic, S.; Segtnan, V. H.; Ozaki, Y. J. Phys. Chem. A 2002, 106, 760. 

    15. [15]

      Shao, X.-G.; Kang, J.; Cai, W.-S. Talanta 2010, 82, 1017.

    16. [16]

      Kang, J.; Cai, W.-S.; Shao, X.-G. Talanta 2011, 85, 420.

    17. [17]

      Shan, R.-F.; Zhao, Y.; Fan, M.-L.; Liu, X.-W.; Cai, W.-S.; Shao, X. G. Talanta 2015, 131, 170. 

    18. [18]

      Tosi, C.; Pinto, A. Spectrochim. Acta 1972, 28A, 585.

    19. [19]

      Mullins, O. C.; Joshi, N. B.; Groenzin, H.; Daigle, T.; Crowell, C.; Joseph, M. T.; Jamaluddin, A. Appl. Spectrosc. 2000, 54, 624. 

    20. [20]

      Garcia, G.; Trenzado, J. L.; Alcalde, R.; Rodriguez-Delgado, A.; Atihan, M.; Aparicio, S. J. Phys. Chem. B 2014, 118, 11310. 

    21. [21]

      Tojo, J.; Canosa, J.; Rodriguez, A.; Ortega, J.; Dieppa, R. J. Chem. Eng. Data 2004, 49, 86. 

    22. [22]

      Shao, X.-G.; Leung, A. K. M.; Chau, F. T. Acc. Chem. Res. 2003, 36, 276. 

    23. [23]

      Shan, R.-F.; Cai, W.-S.; Shao, X.-G. Chemom. Intell. Lab. Syst. 2014, 131, 31.

    24. [24]

      Ni, Y.-N.; Wang, Y.; Kokot, S. Talanta 2009, 78, 432.

    25. [25]

      Ni, Y.-N.; Song, R. M.; Kokot, S. Spectrochim. Acta, Part A 2012, 96, 252. 

    26. [26]

      Kwasniewicz, M.; Czarnecki, M. A. Spectrochim. Acta, Part A 2015, 143, 165. 

    27. [27]

      Parker, M. E.; Steele, D.; Smith, M. J. C. J. Phys. Chem. A 1997, 101, 9618. 

    28. [28]

      Wu, H.-L.; Shibukawa, M.; Oguma, K. J. Chemom. 1998, 12, 1. 

    29. [29]

      Li, S.-F.; Wu, H.-L.; Yu, Y.-J.; Li, Y.-N.; Nie, J.-F.; Fu, H.-Y.; Yu, R.-Q. Talanta 2010, 81, 805.

    30. [30]

       

    31. [31]

      Wang, J.-Y.; Wu, H.-L.; Sun, Y.-M.; Gu, H.-W.; Liu, Z.; Liu, Y.-J.; Yu, R.-Q. J. Chromatogr. B 2014, 948-948, 32.

    32. [32]

       

    33. [33]

      Zhang, S.-R.; Wu, H.-L.; Chen, Y.; Zhang, X.-H.; Wang, J.-Y.; Li, Y.; Yu, R.-Q. Chemom. Intell. Lab. Syst. 2013, 121, 9.

    34. [34]

      Tu, J.-R.; Cai, W.-S.; Shao, X.-G. Analyst 2014, 139, 1016.

    35. [35]

      Tu, J.-R.; Cai, W.-S.; Shao, X.-G. J. Electroanal. Chem. 2014, 725, 25.

  • 加载中
    1. [1]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(0)
  • Abstract views(1607)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return